CeO2改性V-NiFeP双功能催化剂的制备及电解海水性能
蔡奇 , 张令杰 , 赵芳 , 杨阳 , 于静
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (11) : 92 -101.
CeO2改性V-NiFeP双功能催化剂的制备及电解海水性能
Preparation of CeO2-modified V-NiFeP Bifunctional Catalyst and Its Electrolytic Performance of Seawater
通过水热法、 磷化处理、 元素掺杂以及电沉积方法在泡沫镍基底上原位生长了CeO2修饰的钒掺杂多孔镍铁磷化物纳米片催化剂电极(V-NiFeP@CeO2). V掺杂增加了活性位点的数量, 磷化可调节电子结构, CeO2与V-NiFeP发生界面相互作用, 有利于电子转移和反应物吸附, 从而提高了催化活性. 对制备的双功能催化剂在碱性溶液和碱性海水溶液中的析氢和析氧性能进行了研究, 全水解电化学测试结果表明, 催化剂在碱性溶液和碱性海水溶液中100 mA/cm2电流密度下所需的电池电压仅为1.83和1.85 V, 并且在10 mA/cm2电流密度下稳定运行27 h无电压衰减, 表现出优异的电催化性能和长期耐久性.
CeO2-modified vanadium-doped porous nickel-iron phosphide nanosheet catalyst electrodes(V-NiFeP@ CeO2) were in⁃situ grown on nickel foam substrates through hydrothermal method, phosphating treatment, element doping and electrodeposition. Vanadium doping increased the number of active sites, and phosphorization could adjust the electronic structure. The interface interaction between CeO2 and V-NiFeP was conducive to electron transfer and reactant adsorption, thereby enhancing the catalytic activity. The hydrogen evolution and oxygen evolution performance of the prepared bifunctional catalyst in alkaline solution and alkaline seawater solution were studied. The results of full water electrolysis tests showed that the required cell voltage of the catalyst at a current density of 100 mA/cm2 in alkaline solution and alkaline seawater solution was only 1.83 and 1.85 V, respectively, along with stable operation for 27 h at a current density of 10 mA/cm2 without voltage decay. The results indicate that V-NiFeP@CeO2 has excellent electrocatalytic performance and long-term durability.
过渡金属磷化物 / 二氧化铈 / 电解海水 / 析氢反应 / 析氧反应
Transition metal phosphides / CeO2 / Electrolysis of seawater / Hydrogen evolution reaction / Oxygen evolution reaction
| [1] |
Jiao Y. Q., Yan H. J., Tian C. G., Fu H. G., Accounts Mater. Res., 2023, 4(1), 42—56 |
| [2] |
Liu F., Shi C. X., Guo X. L., He Z. X., Pan L., Huang Z. F., Zhang X. W., Zou J. J., Adv. Sci., 2022, 9(18), 2200307 |
| [3] |
Ji X. H., Wang Z. M., Chen X. L., Yu R. B., Chem. J. Chinese Universities, 2021, 42(5), 1377—1394 |
| [4] |
季小好, 王祖民, 陈晓煜, 于然波. 高等学校化学学报, 2021, 42(5), 1377—1394 |
| [5] |
Chen H. C., Liu P. Y., Li W. B., Xu W. W., Wen Y. J., Zhang S. X., Yi L., Dai Y. Q., Chen X., Dai S., Tian Z. Q., Chen L., Lu Z. Y., Adv. Mater., 2024, 36(45), 2411302 |
| [6] |
Gao Z. X., Ma H. R., Wang Q., Li D. Q., Feng J. T., Duan X., Chem. Res. Chinese Universities, 2024, 40(4), 590—610 |
| [7] |
Qureshi F., Yusuf M., Kamyab H., Vo D. V. N., Chellipan S., Joo S. W., Vasseghian Y., Renew. Sust. Energ. Rev., 2022, 168, 112916 |
| [8] |
Li Y., Wei X. F., Chen L. S., Shi J. L., Angew. Chem. Int. Ed., 2021, 60(36), 19550—19571 |
| [9] |
Hu H. S., Wang X. L., Attfield J. P., Yang M. H., Chem. Soc. Rev., 2023, 53(1), 163—203 |
| [10] |
Xie H. P., Zhao Z. Y., Liu T., Wu Y. F., Lan C., Jiang W. C., Zhu L. Y., Wang Y. P., Yang D. S., Shao Z. P., Nature, 2022, 7(4), 765—781 |
| [11] |
Chen L., Yu C., Dong J. T., Han Y. N., Huang H. L., Li W. B., Zhang Y. F., Tan X. Y., Qiu J. S., Chem. Soc. Rev., 2024, 53(14), 7455—7488 |
| [12] |
Xia T., Ren Q. H., Yang J. R., Li Z. H., Shao M. F., Duan X., Chem. Res. Chinese Universities, 2024, 40(4), 577—589 |
| [13] |
Liu H. X., Zhou X., Ye C. M., Ye M. X., Shen J. F., Appl. Catal. B: Environ., 2024, 343, 123560 |
| [14] |
Li X. P., Huang C., Han W. K., Ouyang T., Liu Z. Q., Chin. Chem. Lett., 2021, 32(9), 2597—2616 |
| [15] |
Wang Z. M., Meng C., Yu R. B., Chem. J. Chinese Universities, 2022, 43(11), 20220544 |
| [16] |
王祖民, 孟程, 于然波. 高等学校化学学报, 2022, 43(11), 20220544 |
| [17] |
Li L. G., Liu S. H., Zhan C. H., Wen Y., Sun Z. F., Han J. J., Chan T. S., Zhang Q. B., Hu Z. W., Huang X. Q., Energ. Environ. Sci., 2023, 16(1), 157—166 |
| [18] |
Chen H. Y., Gao R. T., Chen H. J., Yang Y., Wu L. M., Wang L., Adv. Funct. Mater., 2024, 34(25), 2315674 |
| [19] |
Peng J., Dong W., Wang Z., Meng Y., Liu W., Song P., Liu Z., Mater. Today Adv., 2020, 8, 100081 |
| [20] |
Fan K., Sun Y. N., Xu P. C., Guo J., Li Z. H., Shao M. F., Chem. Res. Chinese Universities, 2022, 38(5), 1185—1196 |
| [21] |
Jin Z. Y., Li P. P., Xiao D., Green Chem., 2016, 18, 1459—1464 |
| [22] |
Feng C., Lv M. Y., Shao J. X., Wu H. Y., Zhou. W. L., Qi S., Deng C., Chai X. Y., Yang H. P., Hu Q., He C. X., Adv. Mater., 2023, 35(42), 2305598 |
| [23] |
Li T. F., Yin J. W., Sun D. M., Zhang M. R., Pang H., Xu L., Zhang Y. W., Yang J., Tang Y. W., Xue J. M., Small, 2022, 18, 2106592 |
| [24] |
Yan Z. H., Sun H. M., Chen X., Liu H. H., Zhao Y. R., Li H. X., Xie W., Cheng F. Y., Chen J., Nat. Commun., 2018, 9, 2373 |
| [25] |
Sun H., Jin B. X., Cao S. Y., Zhang J. H., Li T. H., Liu X. J., Liu G. H., Li J. D., Electroanal. Chem., 2023, 943, 117591 |
| [26] |
Wu X. Y., Wang D., Ren Y. P., Zhang H. W., Yin S. Y., Yan M., Li Y. R., Wei S. Z., Materials, 2025, 18(10), 2221 |
| [27] |
Hu Y. M., Liu W. J., Jiang K., Xu L., Guan M. L., Bao J., Ji H. B., Li H. M., Inorg. Chem. Front., 2020, 7(22), 4461—4468 |
| [28] |
Sun H. M., Tian C. Y., Fan G. L., Qi J. N., Liu Z. T., Yan Z. H., Cheng F. Y., Chen J., Li C. P., Du M., Adv. Funct. Mater., 2020, 30(32), 1910596 |
| [29] |
Wu Q., Gao Q. P., Sun L. M., Guo H. M., Tai X. S., Li D., Liu L., Ling C. Y., Sun X. P., Chinese J. Catal., 2021, 42(3), 482—489 |
| [30] |
Li L., Bai L. Q., She S. X., Chen G., Huang H. T., Appl. Catal. B, 2025, 371, 125271 |
| [31] |
Liu K. Y., Jiang H. M., Zhu S. S., Feng Z., Lin J. J., Chem. Eng. J., 2025, 519, 165283 |
| [32] |
Wang Z. K., Wang L. Y., Chu L., Yang M., Wang G., ACS Sustainable Chem. Eng., 2024, 12, 11628—11637 |
| [33] |
Wu X., Wang D., Ren Y., Zhang H., Yin S., Yan M., Li Y., Wei S., Materials, 2025, 18, 2221 |
中央高校基本科研业务费(3072025YC1007)
/
| 〈 |
|
〉 |