可见光催化烯烃的硅酰基化反应
Visible-light Photocatalytic Silylacylation of Alkenes
硅硼化物作为硅自由基前体在有机合成中备受关注, 已成为研究热点. 本文发展了在可见光催化下实现硅硼化物和酰基氮 盐对烯烃的三组分双官能化反应, 合成了一系列高附加值含硅的酮化物. 通过机理实验和理论计算研究发现, 光催化下碱/硅基硼酸酯络合物与酰基氮
盐进行单电子转移, 继而产生的硅基自由基和酰基
盐自由基阴离子依次与烯烃偶联, 最终生成在β位有硅烷基的酮类化合物. 该方法具有良好的官能团耐受性、 温和的反应条件和广泛的底物适用范围.
Carbonyl compounds are prevalent in bioactive molecules and organic functional materials, with ketones being particularly important structural motifs. This work focuses on the development of a visible-light photocatalytic three-component difunctionalization of alkenes using silylborates and acyl ammonium salts to access ketone derivatives. Control experiments and DFT calculations revealed that reaction proceeds via a single-electron transfer cascade process between a base/silylboronate complex and an acyl ammonium salt, triggered by a photocatalyst, generating silyl radicals and acyl radical anions. Subsequent sequential coupling with alkenes affords β-silyl ketones. This method features excellent functional group tolerance, mild reaction conditions, and broad substrate scope.
Photocatalysis / Alkene / Silylation / Acylation
支持信息见http: //www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20250202.
| [1] |
Zhou C., Wang X., Quan X. C., Cheng J. G., Li Z., Maienfisch P., J. Agric. Food Chem., 2022, 70(36), 11063—11074 |
| [2] |
Franz A. K., Wilson S. O., J. Med. Chem., 2013, 56(2), 388—405 |
| [3] |
Li H. C., Chin. JMAP, 2010, 27(8), 689—693 |
| [4] |
李红彩. 中国现代应用药学, 2010, 27(8), 689—693 |
| [5] |
Wang M. F., Yu M. D., Wang W. S., Lin W. L., Luo F. X., Chin. J. Org. Chem., 2019, 39(11), 3145—3153 |
| [6] |
王明凤, 余茂栋, 王文蜀, 林伟立, 罗斐贤. 有机化学, 2019, 39(11), 3145—3153 |
| [7] |
Ramesh R., Reddy D. S., J. Med. Chem., 2018, 61(9), 3779—3798 |
| [8] |
Zhang X. P., Fang J. K., Cai C., Lu G. P., Chin. Chem. Lett., 2021, 32(4), 1280—1292 |
| [9] |
Zhang Z., Gong L., Zhou X. Y., Yan S. S., Li, J., Yu D. G., Acta Chim. Sinica, 2019, 77(9), 783—793 |
| [10] |
张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚. 化学学报, 2019, 77(9), 783—793 |
| [11] |
Chen Y., Lu L. Q., Yu D. G., Zhu C. J., Xiao W. J., Sci. China: Chem., 2019, 62(1), 24—57 |
| [12] |
Han X., He C., Chin. J. Chem., 2024, 42(24), 3414—3428 |
| [13] |
Huang Q. W., Lou C. H., Lv L. Y., Li Z. P., Chem. Res. Chinese Universities, 2024, 40(5), 863—873 |
| [14] |
Xu J. X., Huang W. M., Li J. Z., Chem. Res. Chinese Universities., 2024 , 40(6), 1212—1219 |
| [15] |
Li J. S., Wu J., ChemPhotoChem, 2018, 2(10), 839—846 |
| [16] |
Tanabe Y., Nishibayashi Y., Coord. Chem. Rev., 2019, 389, 73—93 |
| [17] |
Oestreich M., Angew. Chem. Int. Ed., 2016, 55(2), 494—499 |
| [18] |
Cai Z. H., Bu Q. Q., Wang X. Y., Yang S. C., Zhou J., Yu J. S., Chem. Sci., 2025, 16(5), 2154—2169 |
| [19] |
Feng J. J., Mao W. B., Zhang L. L., Oestreich M., Chem. Soc. Rev., 2021, 50(3), 2010—2073 |
| [20] |
Ohmura T., Suginome M., Bull. Chem. Soc. Jpn., 2009, 82(1), 29—49 |
| [21] |
Oestreich M., Hartmann E., Mewald M., Chem. Rev., 2013, 113(1), 402—441 |
| [22] |
Ito H., Horita Y., Yamamoto E., Chem. Commun., 2012, 48(64), 8006—8008 |
| [23] |
Gao L. Z., Liu X. T., Li G. A., Chen S. D., Cao J., Wang G. Q., Li S. H., Org. Lett., 2022, 24(31), 5698—5703 |
| [24] |
Matsumoto A., Ito Y., J. Org. Chem., 2000, 65(18), 5707—5711 |
| [25] |
Takemura N., Sumida Y., Ohmiya H., ACS Catal., 2022, 12(13), 7804—7810 |
| [26] |
Arai R., Nagashima Y., Koshikawa T., Tanaka K., J. Org. Chem., 2022, 88(15), 10371—10380 |
| [27] |
Wan Y., Zhao Y. M., Zhu J. J., Yuan Q. Y., Wang W., Zhang Y. Q., Green Chem., 2023, 25(1), 256—263 |
| [28] |
Cao J., Wang G. Q., Gao L. Z., Cheng X., Li S. H., Chem. Sci., 2018, 9(15), 3664—3671 |
| [29] |
Cao J., Wang G. Q., Gao L. Z., Chen H., Liu X. T., Cheng X., Li S. H., Chem. Sci., 2019, 10(9), 2767—2772 |
| [30] |
Cao J., Liu Y., Wang Z. X., Liu L., Org. Chem. Front., 2024, 11(24), 7098—7106 |
| [31] |
Cao J., Gao L. Z., Wang G. Q., Li S. H., Green Chem., 2024, 26(8), 4785—4791 |
| [32] |
Liu K., Schwenzer M., Studer A., ACS Catal., 2022, 12(19), 11984—11999 |
| [33] |
Bay A. V., Scheidt K. A., Trends Chem., 2022, 4(4), 277—290 |
| [34] |
Rourke M. J., Wang C. T., Schull C. R., Scheidt K. A., ACS Catal., 2023, 13(12), 7987—7994 |
| [35] |
Zhu J. L., Schull C. R., Tam A. T., Rentería⁃Gómez A., Gogoi A. R., Gutierrez O., Scheidt K. A., J. Am. Chem. Soc., 2023, 145(3), 1535—1541 |
| [36] |
Zhang M. L., Xie J., Zhu C. J., Nat. Commun., 2018, 9, 3517 |
| [37] |
Cao J., Liu Y., Wang Z. X., Liu L., Org. Chem. Front., 2024, 11(24), 7098—7106 |
| [38] |
Miyazawa K., Koike T., Akita M., Chem. Eur. J., 2015, 21(33), 11677—11680 |
| [39] |
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams⁃Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 09 Revision, Gaussian, Inc., Wallingford, CT, 2009 |
| [40] |
Zhao Y., Truhlar D. G., J. Chem. Theory. Comput., 2008, 4(11), 1849—1868 |
| [41] |
Bergner A., Dolg M., Küchle W., Stoll H., Preussß H., Mol. Phys., 1993, 80(6), 1431—1441 |
| [42] |
Hehre W. J., Ditchfield R., Pople J. A., J. Chem. Phys., 1972, 56(5), 2257—2261 |
| [43] |
Gonzalez C., Schlegel H. B., J. Chem. Phys., 1989, 90(4), 2154—2161 |
| [44] |
Kendall R. A., Dunning T. Jr, Harrison R. J., J. Chem. Phys., 1992, 96(9), 6796—6806 |
| [45] |
Tomasi J., Persico M., Chem. Rev., 1994, 94(7), 2027—2094 |
| [46] |
Legault C. Y., CYLview 20, Université de Sherbrooke, Sherbrooke, 2020 |
| [47] |
Marcus R. A., J. Chem. Phys., 1956, 24(5), 966—978 |
| [48] |
Marcus R. A., J. Chem. Phys., 1956, 24(5), 979—989 |
| [49] |
Marcus R. A., J. Chem. Phys., 1957, 26(4), 872—877 |
| [50] |
Hush N. S., J. Chem. Phys., 1958, 28(5), 962—972 |
| [51] |
Qi Z. H., Ma J., ACS Catal., 2018, 8(2), 1456—1463 |
| [52] |
Lu T., Chen F. W., J. Comput. Chem., 2012, 33(5), 580—592 |
国家自然科学基金(22162024)
国家自然科学基金(22272144)
陕西高校青年创新团队项目(24JP207)
教育部产学研合作育人项目(2412064200)
教育部产学研合作育人项目(2412063658)
/
| 〈 |
|
〉 |