基于构象自适荧光团构建的比率型荧光探针及脂滴原位可视化研究
周意超 , 田贺 , 韩海浩 , 王辰瀚 , 胡习乐 , 贺晓鹏
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (12) : 24 -36.
基于构象自适荧光团构建的比率型荧光探针及脂滴原位可视化研究
Fluorescent Probes Constructed Based on Conformationally-adaptive Fluorophores for the In⁃situ Visualization of Lipid Droplets
通过具有双荧光发射特性、 亲脂的“构象自适”荧光基团N,N'-二苯基-二氢二苯并[a,c]吩嗪(DPAC)与线粒体靶向基团三苯基膦(TPP)之间的偶联, 构建了可对脂滴(LD)和线粒体双重标记的比率型荧光探针 TPP⁃DPAC. 通过将探针与油酸(OA)诱导胞内LD生成的HepG2细胞共孵育, 证实了探针能同时对LD和线粒体进行标记, 荧光成像共定位系数(Rr)分别为0.96和0.95. 进一步实验表明, 由于探针对所处的细胞微环境构象自适应, 可动态发生红/蓝荧光信号变化, 从而实现细胞中LD形成与融合等动态事件的原位示踪. 该比率型荧光探针为监测细胞内LD代谢过程及其与线粒体的相互作用提供了可视化工具, 也为探究LD与其它亚细胞器的相互作用提供了新策略.
In this study, a ratiometric fluorescent probe, TPP⁃DPAC, was developed for dual labeling of lipid droplets(LDs) and mitochondria. This probe was constructed by conjugating the lipophilic "conformational adaptive" fluorophore N,N'-diphenyl-dihydrodibenzo[a,c]phenazine(DPAC)—which exhibits dual fluorescence emission—with the mitochondrial-targeting group triphenylphosphine(TPP). By co-incubating OA-induced HepG2 cells with the probe to stimulate LD formation, it was demonstrated that TPP⁃DPAC could simultaneously label both LDs and mitochondria. The fluorescence imaging co-localization coefficients(Rr) were 0.96 and 0.95, respectively. Further experiments revealed that the probe undergoes dynamic changes in red/blue fluorescence signals due to its conformational adaptation to the local cellular microenvironment, thereby enabling in situ tracing of dynamic cellular processes such as LD formation and fusion. This ratiometric fluorescent probe provides a visualization tool for monitoring intracellular LD metabolism and its interaction with mitochondria, and offers a new strategy for studying interactions between LDs and other subcellular organelles.
Fluorescent probe / Lipid droplet / Mitochondria / Fluorescence imaging
支持信息见 http: //www.cjcu.jlu.edu.cn/CN/10.7503/20250204.
| [1] |
Chen X., Wu X., Wu H., Zhang M., Nat. Neurosci., 2020, 23(3), 301—310 |
| [2] |
Zhao Y. G., Zhang H., Dev. Cell, 2020, 55(1), 30—44 |
| [3] |
Yang X. Z., Yao S., Wu J., Diao J., He W., Guo Z., Chen Y., Smart Molecules, 2024, 2(4), e20240040 |
| [4] |
Wang W. J., Mu X., Tan C. P., Wang Y. J., Zhang Y., Li G., Mao Z. W., J. Am. Chem. Soc., 2021, 143(30), 11370—11381 |
| [5] |
Dahiwadkar R., Rajput D., Singh D., Soppina V., Kanvah S., New J. Chem., 2023, 47(21), 10016—10024 |
| [6] |
Riback J. A., Zhu L., Ferrolino M. C., Tolbert M., Mitrea D. M., Sanders D. W., Wei M. T., Kriwacki R. W., Brangwynne C. P., Nature, 2020, 581(7807), 209—214 |
| [7] |
Liu J., Spruijt E., Miserez A., Langer R., Nat. Rev. Mater., 2023, 8, 139—141 |
| [8] |
Gros F., Muller S., Nat. Rev. Nephrol., 2023, 19, 366—383 |
| [9] |
Park S. J., Juvekar V., Jo J. H., Kim H. M., Chem. Sci., 2020, 11(2), 596—601 |
| [10] |
Chauhan N., Koli M., Ghosh R., Majumdar A. G., Ghosh A., Ghanty T. K., Mula S., Patro B. S., JACS Au, 2024, 4(8), 2838—2852 |
| [11] |
Liu X., Chang Y. T., Chem. Soc. Rev., 2022, 51(5), 1573—1591 |
| [12] |
Dou W., Han H., Sedgwick A. C., Zhu G., Zang Y., Yang X., Yoon J., D. Tony, Li J., He X., Sci. Bull., 2022, 67(8), 853—878 |
| [13] |
Hu X., Gan H., Gui W., Yan K., Sessler J. L., Yi D., Tian H., He X., PNAS, 2024, 121(37), e2408716121 |
| [14] |
Wang S., Zhou K., Lyu X., Li H., Qiu Z., Zhao Z., Tang B. Z., CBMI, 2023, 1(6), 509—521 |
| [15] |
Li G., Zhang L., Zheng H., Huang L., Li Z., Li W., Lin W., Anal. Chem., 2023, 95(42), 15795—15802 |
| [16] |
Shi W. J., Yan X. H., Yang J., Wei Y. F., Huo Y. T., Su C. L., Yan J. W., Han D., Niu L., Anal. Chem., 2023, 95(25), 9646—9653 |
| [17] |
Li S., Wang P., Ye M., Yang K., Cheng D., Mao Z., He L., Liu Z., Anal. Chem., 2023, 95(11), 5133—5141 |
| [18] |
Wang K. N., Liu L. Y., Mao D., Xu S., Tan C. P., Cao Q., Mao Z. W., Liu B., Angew. Chem. Int. Ed., 2021, 60(27), 15095—15100 |
| [19] |
Meng F., Niu J., Zhang H., Yang R., Lu Q., Niu G., Liu Z., Yu X., Anal. Chem., 2021, 93(34), 11729—11735 |
| [20] |
Liu Y., Gong X. T., Wang K. N., He S., Wang Y., Lin Q., Liu Z., Yu X., Liu B., Mater. Horiz., 2024, 11(14), 3287—3297 |
| [21] |
Chen Y., Li A., Li X., Tu L., Xie Y., Xu S., Li Z., Adv. Mater., 2023, 35(20), 2211917 |
| [22] |
Dou W. T., Chen W., He X. P., Su J., Tian H., Faraday Discuss., 2017, 196, 395—402 |
| [23] |
Dou W. T., Qin Z. Y., Li, J., Zhou D. M., He X. P., Sci. Bull., 2019, 64(24), 1902—1909 |
| [24] |
Dou W. T., Wang X., Liu T., Zhao S., Liu J. J., Yan Y., Li J., Zhang C., Sedgwick A. C., Tian H., Sessler J. L., Zhou D., He X., Chem, 2022, 8(6), 1750—1761 |
| [25] |
Hu X. L., Gan H. Q., Qin Z. Y., Liu Q., Li M., Chen D., Sessler J. L., Tian H., He X. P., J. Am. Chem. Soc., 2023, 145(16), 8917—8926 |
| [26] |
Zhang Z., Sun G., Chen W., Su J., Tian H., Chem. Sci., 2020, 11(29), 7525—7537 |
| [27] |
Chen X., Yuan S., Qiao M., Jin X., Chen J., Guo L., Su J., Qu D. H., Zhang Z., J. Am. Chem. Soc., 2023, 145(48), 26494—26503 |
| [28] |
Xu W. T., Li X., Wu P., Li W. J., Wang Y., Xu X. Q., Wang X. Q., Chen J., Yang H. B., Wang W., Angew. Chem. Int. Ed., 2024, 63(12), e202319502 |
| [29] |
Ramos‐Soriano J., Benitez‐Benitez S. J., Davis A. P., Galan M. C., Angew. Chem. Int. Ed., 2021, 60(31), 16880—16884 |
| [30] |
Toldo J., El Bakouri O., Solà M., Norrby P. O., Ottosson H., ChemPlusChem, 2019, 84(6), 712—721 |
| [31] |
Zhang Z., Wu Y. S., Tang K. C., Chen C. L., Ho J. W., Su J., Tian H., Chou P. T., J. Am. Chem. Soc., 2015, 137(26), 8509—8520 |
| [32] |
Gong J., Wei P. F., Liu J., Chen Y., Zhao Z., Zhao W., Xie H., Ma C., Lam J. W. Y., Wong K. S., Li Y., Tang B. Z., Aggregate, 2023, 4(2), e265. |
| [33] |
Huang W., Sun L., Zheng Z., Su J., Tian H., Chem. Commun., 2015, 51(21), 4462—4464 |
| [34] |
Chen J., Wu Y., Wang X., Yu Z., Tian H., Yao J., Fu H., Phys. Chem. Chem. Phys., 2015, 17(41), 27658—27664 |
| [35] |
Sun G., Zhou H., Liu Y., Li Y., Zhang Z., Mei J., Su J., ACS Appl. Mater. Interfaces, 2018, 10(23), 20205—20212 |
| [36] |
Zheng Z., Dong Q., Gou L., Su J. H., Huang J., J. Mater. Chem. C, 2014, 2(46), 9858—9865 |
| [37] |
Humeniuk H. V., Rosspeintner A., Licari G., Kilin V., Bonacina L., Vauthey E., Sakai N., Matile S., Angew. Chem. Int. Ed., 2018, 57(33), 10559—10563 |
| [38] |
Wang S., Zhou B., Wang N., Yu C., Yang N., Chen J., Wu Q., Zhang C., Li L., Huang W., Chinese Chem. Lett., 2020, 31(11), 2897—2902 |
| [39] |
Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez⁃Vivar J., Cheng G., Lopez M., Kalyanaraman B., Chem. Rev., 2017, 117(15), 10043—10120 |
| [40] |
Chen X. C., Tang G. X., Luo W. H., Shao W., Dai J., Zeng S. T., Huang Z. S., Chen S. B., Tan J. H., J. Am. Chem. Soc., 2021, 143(49), 20779—20791 |
| [41] |
Liu Y., Li X., Shi W., Ma H., Chem. Commun., 2022, 58(92), 12815-12818 |
| [42] |
Li H., Shi W., Li X., Hu Y., Fang Y., Ma H., J. Am. Chem. Soc., 2019, 141(45), 18301—18307 |
| [43] |
Wan W., Zeng L, Jin W., Chen X., Shen D., Huang Y., Wang M., Bai Y., Lyu H., Dong X., Gao Z., Wang L., Liu X., Liu Y., Angew. Chem. Int. Ed., 2021, 133(49), 26069—26075 |
| [44] |
Weidlich D., Honecker J., Gmach O., Wu M., Burgkart R., Ruschke S., Franz D., Menze B. H., Skurk T., Hauner H., Kulozik U., Karampinos D. C., Magn. Reson. Med., 2019, 81(6), 3427—3439 |
| [45] |
Hu X. L., Gan H. Q., Qin Z. Y., Liu Q., Li M., Chen D. J., Sessler J. L., Tian H., He X. P., J. Am. Chem. Soc., 2023, 145(16), 8917—8926 |
| [46] |
Dou W. T., Wang X., Liu T., Zhao S., Liu J. J., Yan Y., Li J., Zhang C. Y., Sedgwick A. C., Tian H., Sessler J. L., Zhou D. M., He X. P., Chem, 2022, 8(6), 1750—1761 |
国家自然科学基金(92253306)
国家自然科学基金(82130099)
国家自然科学基金(22477030)
/
| 〈 |
|
〉 |