偶氮基薄膜的全息光存储
Holographic Optical Storage in Azo-based Films
全息光存储利用光的干涉和衍射原理记录并重建三维信息, 具有超高存储密度和并行读写能力, 是信息存储的重要发展方向. 在诸多全息存储介质中, 偶氮分子因其分子体积小、 偏振敏感、 光响应速度快、 折射指数变化幅度大及与聚合物基质兼容性好等优势而备受关注. 本文综合评述了40年来偶氮材料在偏振全息存储和表面浮雕光栅领域的发展情况, 特别展示了偶氮分子掺杂的聚合物薄膜高密度复用偏振全息存储的设计思路和实验结果, 分析了偶氮基薄膜用于光子集成芯片的可行性.
Holographic optical storage exhibits recording and reconstructing ability for three-dimensional information based on optical interference and diffraction. It has ultra-high storage density and parallel reading and writing ability, and becomes an important developing direction of information storage. Among various kinds of holographic storage media, azo molecules have attracted much attention due to their advantages such as small molecular size, polarization sensitivity, fast light response, large refractive index changes, and high compatibility with polymer matrix. Herein, we review the applications of azo materials in polarization holographic storage and surface relief gratings in the past 40 years, especially the design and experimental results of high-density multiplexing polarization holographic storage in azo molecule-doped polymer thin films. The feasibility of application of azo-based thin films in photon integrated chip is also analyzed.
Azo molecule / Polarization holography / Surface relief grating
1995年12月至1998年5月作者刘益春在吉林大学化学系从事博士后研究期间, 开展了有机光存储方面的工作, 感谢汤心颐先生和李铁津先生给予作者的鼓励和关于偶氮材料高密度全息光存储的有益讨论, 谨以此文纪念二位先生.
| [1] |
Gabor D., Nature, 1948, 161, 777—778 |
| [2] |
Van Heerden P. J., Appl. Optics, 1963, 2(4), 393—400 |
| [3] |
Ashkin A., Boyd G. D., Dziedzic J. I., Smith R. G., Ballman A. A., Levinstein J. J., Nassau K., Appl. Phys. Lett., 1966, 9(1), 72—74 |
| [4] |
Chen F. S., LaMacchia J. T., Fraser D. B., Appl. Phys. Lett., 1968, 13(7), 223—225 |
| [5] |
Kirillov D., Feinberg J., Opt. Lett., 1991, 16(19), 1520—1522 |
| [6] |
Ma J., Chang T., Hong J., Neurgaonkar R., Barbastathis G., Psaltis D., Opt. Lett., 1997, 22(14), 1116—1118 |
| [7] |
Adibi A., Buse K., Psaltis D., Opt. Lett., 1999, 24(10), 652—654 |
| [8] |
Buse K., Adibi A., Psaltis D., Nature, 1998, 393(6686), 665—668 |
| [9] |
Kewitsch A., Segev M., Yariv A., Neurgaonkar R., Opt. Lett., 1993, 18(15), 1262—1264 |
| [10] |
Kakichashvili S. D., Soviet J. Quantum Electronics, 1974, 4(6), 795 |
| [11] |
Todorov T., Nikolova L., Tomova N., Appl. Optics, 1984, 23(24), 4588—4591 |
| [12] |
Todorov T., Nikolova L., Stoyanova K., Tomova N., Appl. Optics, 1985, 24(6), 785—788 |
| [13] |
Ivanov M., Nikolova L., Todorov T., Dragostinova V., Opt. Quant. Electron., 1994, 26(11), 1013—1018 |
| [14] |
Ivanov M., Todorov T., Nikolova L., Tomova N., Dragostinova V., Appl. Phys. Lett., 1995, 66(17), 2174—2176 |
| [15] |
Sekkat Z., Dumont M., Appl. Phys. B, 1992, 54(5), 486—489 |
| [16] |
Page R. H., Jurich M C., Reck B., Sen A., Twieg R. J., Swalen J. D., Willson C. G., J. Opt. Soc. Am. B, 1990, 7(7), 1239—1245 |
| [17] |
Sekkat Z., Dumont M., Appl. Phys. B, 1991, 52(2), 121—123 |
| [18] |
Todorov T., Nikolova L., Tomova N., Appl. Optics, 1984, 23(23), 4309—4312 |
| [19] |
Nikolova L., Markovsky P., Tomova N., Dragostinova V., Mateva N., J. Mod. Opt., 1988, 35(11), 1789—1799 |
| [20] |
Blanche P. A., Lemaire P. C., Dumont M., Fischer M., Opt. Lett., 1999, 24(19), 1349—1351 |
| [21] |
Fei H., Wei Z., Wu P., Han L., Zha Y., Che Y., Opt. Lett., 1994, 19(6), 411—413 |
| [22] |
Liu Y., Wang H., Tian M., Proc. SPIE, 1995, 2405, 148—154 |
| [23] |
Zhang Y., Lu Z., Deng X., Liu Y., Tan C., Zhao Y., Kong X., Opt. Mater., 2003, 22(3), 187—192 |
| [24] |
Zhang Y., Lu Z., Deng X., Liu Y., Zhao Y., Opt. Commun., 2003, 220(4—6), 289—295 |
| [25] |
Zhang Y., Tan C., Liu Q., Lu R., Song Y., Jiang L., Liu Y., Appl. Surf. Sci., 2003, 220(1—4), 224—230 |
| [26] |
Li H., Wang J., Wang C., Zeng P., Pan Y., Yang Y., P. JPN Acad. B: Phys., 2016, 92(8), 330—335 |
| [27] |
Schab Balcerzak E., Skorus B., Siwy M., Janeczek H., Sobolewska A., Konieczkowska J., Wiacek M., Polym. Int., 2015, 64(1), 76—87 |
| [28] |
Shian Li M., Fuh A. Y. G., Wu S. T., Opt. Lett., 2011, 36(19), 3864—3866 |
| [29] |
De Sio L., Serak S., Tabiryan N., Umeton C., J. Mater. Chem., 2011, 21(19), 6811—6814 |
| [30] |
Guo Q., Xu L., Sun J., Yang X., Liu H., Yan K., Kwok H. S., Liq. Cryst., 2019, 46(9), 1383—1388 |
| [31] |
Tsutsumi N., Yabuhara Y., Kinashi K., Sakai W., Opt. Mater. Express, 2017, 7(5), 1647—1655 |
| [32] |
Chen H., Lyu Z., Wang C., Opt. Commun., 2025, 583, 131717 |
| [33] |
Cai P., Wang J., Wang C., Zeng P., Li H., Chin. Opt. Lett., 2016, 14(1), 010009 |
| [34] |
Nersisyan S. R., Tabiryan N. V., Steeves D. M., Kimball B. R., Appl. Optics, 2009, 48(21), 4062—4067 |
| [35] |
Chen T. Y., Wang C. S., Pan J. Y., Sun L. L., Acta Physica Sinica, 2021, 70(5), 054204 |
| [36] |
陈天宇, 王长顺, 潘雨佳, 孙丽丽. 物理学报, 2021, 70(5), 054204 |
| [37] |
Rochon P., Batalla E., Natansohn A., Appl. Phys. Lett., 1995, 66(2), 136—138 |
| [38] |
Kim D. Y., Tripathy S. K., Li L., Kumar J., Appl. Phys. Lett., 1995, 66(10), 1166—1168 |
| [39] |
Kim D. Y., Li L., Jiang X. L., Shivshankar V., Kumar J., Tripathy S. K., Macromolecules, 1995, 28(26), 8835—8839 |
| [40] |
Kumar J., Li L., Jiang X. L., Kim D. Y., Lee T. S., Tripathy S., Appl. Phys. Lett., 1998, 72(17), 2096—2098 |
| [41] |
Fiorini C., Prudhomme N., De Veyrac G., Maurin I., Synthetic Met., 2000, 115(1—3), 121—125 |
| [42] |
Yager K. G., Barrett C. J., Curr. Opin. Solid St. M., 2001, 5(6), 487—494 |
| [43] |
Audorff H., Walker R., Kador L., Schmidt H. W., J. Phys. Chem. B, 2009, 113(11), 3379—3384 |
| [44] |
Sobolewska A., Bartkiewicz S., Miniewicz A., Schab⁃Balcerzak E., J. Phys. Chem. B, 2010, 114(30), 9751—9760 |
| [45] |
Hubert C., Malcor E., Maurin I., Nunzi J. M., Raimond P., Fiorini C., Appl. Surf. Sci., 2002, 186(1—4), 29—33 |
| [46] |
Hurduc N., Donose B. C., Macovei A., Paius C., Ibanescu C., Scutaru D., Hamel M., Branza-Nichita N., Rocha L., Soft Matter, 2014, 10(26), 4640—4647 |
| [47] |
Kim C. B., Wistrom J. C., Ha H., Zhou S. X., Katsumata R., Jones A. R., Janes D. W., Miller K. M., Ellison C. J., Macromolecules, 2016, 49(18), 7069—7076 |
| [48] |
Moujdi S., Rahmouni A., Mahfoud T., Nesterenko D. V., Halim M., Sekkat Z., J. Appl. Phys., 2018, 124(21), 213103 |
| [49] |
Yadavalli N. S., Loebner S., Papke T., Sava E., Hurduc N., Santer S., Soft Matter, 2016, 12(9), 2593—2603 |
| [50] |
Goldenberg L. M., Lisinetskii V., Gritsai Y., Stumpe J., Schrader S., Adv. Mater., 2012, 24(25), 3339—3343 |
| [51] |
Paatelainen M., Lahikainen M., Berdin A., Kuntze K., Nau W. M., Nonappa, Priimagi A., Adv. Opt. Mater., 2023, 11(15), 2300232 |
| [52] |
Liu Y., Zhang Z., Jiang X., Fu S., Zhang X., Liu Y., Opt. Lett., 2025, 50(17), 5374—5377 |
| [53] |
Liu J., Wang J., Ikeda T., Jiang L., Adv. Funct. Mater., 2021, 31(48), 2105728 |
| [54] |
Zhang Z. Y., Dong D., Bösking T., Dang T., Liu C., Sun W., Xie M., Stefan H., Li T., Angew. Chem. Int. Ed., 2024, 63(31), e202404528 |
| [55] |
Ferrarese Lupi F., Rosero⁃Realpe M., Ocarino A., Frascella F., Milano G., Angelini A., Adv. Mater., 2025, 37(41), 2501813 |
| [56] |
Strobelt J., Santer S., Abourahma H., Music M., Farzan Z., Nezamis P., Leon R., McGee D. J., ACS Appl. Opt. Mater., 2025, 3(7), 1461—1476 |
国家自然科学基金(12374270)
/
| 〈 |
|
〉 |