磁控溅射制备MoON薄膜电极及其电化学储能性质
Magnetron-Sputtered MoON Thin Film Electrode for High-performance Electrochemical Energy Storage
采用磁控溅射法制备了具有梯度氧含量的MoON薄膜材料, 研究了制备过程中N2/O2分压对MoON薄膜微观结构、 晶型、 化学键合、 导电性以及电化学储能性质的影响. 结果表明, 在优化氧含量下, 当Ar/N2/O2的流量(sccm)比为240∶50∶10时, MoON薄膜电极材料展现出最优的电化学储能性质, 在1 mol/L Na2SO4溶液中, 其面积比电容从纯MoN薄膜电极的134 mF/cm²提升至211 mF/cm², 增加了57.5%, 而且具有优异的循环稳定性, 在充放电10000次之后电容量没有衰减.
MoON thin films with gradient oxygen content were prepared by magnetron sputtering. The effects of N2/O2 partial pressures during the preparation process on the microstructure, crystallinity, chemical bonding, electrical conductivity and electrochemical energy storage performance of MoON thin film electrodes were studied. The results reveal that when the flow rate(sccm) ratio of Ar/N2/O2 is 240∶50∶10, the MoON thin-film electrode exhibits the optimal energy storage performance. In a 1 mol/L Na2SO4 solution, its capacitance per unit area increases from 134 mF/cm²(pure MoN thin-film electrode) to 211 mF/cm², with an increase of 57.5%. Moreover, it has excellent cycle stability with no capacitance retention decay after 10000 charge and discharge cycles.
MoON薄膜 / 磁控溅射 / 薄膜电极 / 电化学储能性质
MoON film / Magnetron sputtering / Thin film electrode / Electrochemical energy storage property
| [1] |
Liu T. Y., Li Y., InfoMat, 2020, 2(5), 807—842 |
| [2] |
Gopi C. V. M., Ramesh R., Results Eng., 2024, 24, 103598 |
| [3] |
Abdel Maksoud M., Fahim R. A., Shalan A. E., Elkodous M., Olojede S., Osman A. I., Farrell C., Al‑Muhtaseb A. H., Awed A. S., Ashour A. H., Rooney D. W., Environ. Chem. Lett., 2021, 19, 375—439 |
| [4] |
Liu S., Wei L., Wang H., Appl. Energy, 2020, 278, 115436 |
| [5] |
Yang Z. G., Xu H. M., Shuai T. Y., Zhan Q. N., Zhang Z. J., Huang K., Dai C., Li G. R., Nanoscale, 2023, 15(28), 11777—11800 |
| [6] |
Idrees M., Mukhtar A., Abbas S. M., Zhang Q., Li X. K., Mater. Today Commun., 2021, 27, 102363 |
| [7] |
Luo Q., Lu C. C., Liu L. R., Zhu M. Y., Green Energy Environ., 2023, 8(2), 406—437 |
| [8] |
Lucio⁃Porto R., Bouhtiyya S., Pierson J., Morel A., Capon F., Boulet P., Brousse T., Electrochim. Acta, 2014, 141, 203—211 |
| [9] |
Palraj J., Arulraj A., Therese H. A., Appl. Surf. Sci. Adv., 2024, 19, 100579 |
| [10] |
Liu T. C., Pell W., Conway B., Roberson S., J. Electrochem. Soc., 1998, 145(6), 1882 |
| [11] |
Shah S. I. U., Hector A. L., Owen J. R., J. Power Sources, 2014, 266, 456—463 |
| [12] |
Wen M., Han P. X., Kong Q. S., Zhang K. J., J. Inorg. Mater., 2013, 28(7), 733—738 |
| [13] |
Chen L. M., Liu C., Zhang Z. J., Electrochim. Acta, 2017, 245, 237—248 |
| [14] |
Dong S. M., Chen X., Zhang X. Y., Cui G. L., Coord. Chem. Rev., 2013, 257(13/14), 1946—1956 |
| [15] |
Kadam S. A., Kate R. S., Peheliwa V. M., Shingate S. A., Maria C. C. S., Ma Y. R., J. Energy Storage, 2023, 72, 108229 |
| [16] |
He J. H., Qiang J. X., Xu Y. F., Shi Z., Huang K. K., Yao X. D., Inorg. Chem. Front., 2025, 12(5), 1743—1772 |
| [17] |
Xing T., Ouyang Y. H., Chen Y. L., Zheng L. P., Wu C., Wang X. Y., J. Energy Storage, 2020, 28, 101248 |
| [18] |
Zhou Q. X., Ju W. W., Yong Y. L., Zhang Q., Liu Y. L., Li J. L., Carbon, 2020, 170, 368—379 |
| [19] |
Chen X. J., Wang P. X., Jin J. M., Song B., He P., J. Phys. Chem. C, 2022, 126(12), 5682—5690 |
| [20] |
Zhao L., Li Y., Yu M. M., Peng Y. Y., Ran F., Adv. Sci., 2023, 10(17), 2300283 |
| [21] |
Zhang J. P., Han X. T., Weng Y. L., Zhang K., Chen X. K., Hu B. S., Ind. Eng. Chem. Res., 2025, 64(19), 9600—9607 |
| [22] |
Qin Y., Hu C. M., Huang Q., Lv Y. K., Song Z. Y., Gan L. H., Liu M. X., Nano⁃Micro Lett., 2025, 18(1), 38 |
| [23] |
Ranjan B., Kaur D., Small, 2024, 20(20), 2307723 |
| [24] |
Lobe S., Bauer A., Uhlenbruck S., Fattakhova⁃Rohlfing D., Adv. Sci., 2021, 8(11), 2002044 |
| [25] |
Gudmundsson J. T., Plasma Sources Sci. Technol., 2020, 29(11), 113001 |
| [26] |
Feyzi E., Kumar M. R. A., Li X., Deng S. X., Nanda J., Zaghib K., Next Energy, 2024, 5, 100176 |
| [27] |
Han H., Lee J. S., Cho S. H., Polymers, 2019, 11(2), 232 |
| [28] |
Gao Z. C., Buchinger J., Koutná N., Wojcik T., Hahn R., Mayrhofer P. H., Acta Mater., 2022, 231, 117871 |
| [29] |
Chen Z., Huang Y., Gao Z. C., Zheng Y. H., Mayrhofer P. H., Zhang Z. L., Acta Mater., 2025, 283, 120551 |
| [30] |
Jha S., Qin Y., Chen Y. M., Song Z. Y., Miao L., Lv Y. K., Gan L. H., Liu M. X., J. Mater. Chem. A, 2025, 13(20), 15101—15110 |
| [31] |
Chun S. Y., Coatings, 2021, 11(11), 1351 |
| [32] |
Wang X. L., Wang X., Di Q. Y., Zhao H. L., Liang B., Yang J. K., Materials, 2017, 10(12), 1398 |
| [33] |
Sakar M., Prakash R. M., Shinde K., Balakrishna G. R., Int. J. Hydrogen Energy, 2020, 45(13), 7691—7705 |
| [34] |
Feng J. H., Lin P. J., Jiang B. B., Yang J. M., Hu M. Y., Ahmad A., Xie L., He J. Q., J. Materiomics, 2025, 11(2), 100875 |
| [35] |
Yang J., Xiao X., Chen P., Zhu K., Cheng K., Ye K., Wang G. L., Cao D. X., Yan J., Nano Energy, 2019, 58, 455—465 |
| [36] |
Shi T., Song Z. Y., Lv Y. K., Zhu D. Z., Miao L., Gan L. H., Liu M. X., Chinese Chem. Lett., 2025, 36(1), 109559 |
安徽省高校科研项目(RZ2400002951)
/
| 〈 |
|
〉 |