基于多面体低聚倍半硅氧烷的有机-无机杂化纳米复合材料用于锌离子荧光传感器
姜维娜 , 姜海建 , 周惠 , 成伟唯
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (12) : 16 -24.
基于多面体低聚倍半硅氧烷的有机-无机杂化纳米复合材料用于锌离子荧光传感器
Organic-inorganic Hybrid Nanocomposite from Polyhedral Oligomeric Silsesquioxane as a Fluorescent Sensor for Zn2+ Ions
以水杨醛和多面体笼状倍半硅氧烷(POSS)为原料, 设计合成了一种新型的有机-无机杂化的荧光传感器. 通过水杨醛与POSS-NH2反应, 得到了具有水杨醛-席夫碱结构的POSS-Sa, 并对其结构进行了红外光谱、 紫外光谱及核磁共振波谱表征. 实验结果表明, 在锌离子(Zn²⁺)存在时, POSS-Sa的荧光效率显著提高. 随着锌离子浓度的增大, POSS-Sa的荧光强度逐渐增强, 且在一定的浓度范围内, POSS-Sa的荧光强度与锌离子浓度呈线性关系, 工作曲线为y=10.31x+455.38(R²=0.997), 线性范围为0.5~50×10-7 mol/L, 检出限为1×10-8 mol/L. 该传感器对Zn²⁺具有高选择性和灵敏度, 应用于食品样品检测的回收率较高, 并且具有良好的生物相容性, 有望用于食品样品和体外细胞中Zn²⁺的检测.
In this study, a novel organic-inorganic hybrid fluorescent sensor was designed and synthesized using salicylaldehyde and polyhedral oligomeric silsesquioxane(POSS) as raw materials. Through the reaction of salicylaldehyde with POSS-NH2, POSS-Sa with a salicylaldehyde-Schiff base structure was obtained, and its structure was characterized by Fourier transform infrared spectroscopy(FTIR), ultraviolet-visible spectroscopy(UV-Vis), and nuclear magnetic resonance spectroscopy(NMR). The results revealed that the fluorescence efficiency of POSS-Sa significantly increased in the presence of zinc ions(Zn²⁺). As the concentration of Zn²⁺ increased, the fluorescence intensity of POSS-Sa gradually enhanced. Within a certain concentration range, the fluorescence intensity exhibited a linear relationship with Zn²⁺ concentration, following the calibration curve of y=10.31x+455.38(R²=0.997). The linear detection range was 0.5—50×10⁻⁷ mol/L, with a detection limit of 1×10⁻⁸ mol/L. This sensor demonstrated high selectivity and sensitivity toward Zn²⁺ and was successfully applied to the detection of Zn²⁺ in food samples, showing high recovery rates. Additionally, due to its good biocompatibility, the sensor holds potential for Zn²⁺ detection in food samples and in vitro cellular environments.
多面体低聚倍半硅氧烷 / 锌离子 / 荧光探针 / 水杨醛-席夫碱
Polyhedral oligomeric silsesquioxane / Zn2+ / Fluorescent probe / Salicylaldehyde Schiff
| [1] |
Finney L. A., O’Halloran T. V., Science, 2003, 300(5621), 931—936 |
| [2] |
Stiles L. I., Ferrao K., Mehta K. J., Clin. Exp. Med., 2024, 24, 38 |
| [3] |
Kumar V., Kumar A., Singh K., Avasthi K., Kim J. J., Eur. J. Nutr., 2021, 60, 55—64 |
| [4] |
Kozlowski H., Luczkowski M., Remelli M., Valensin D., Coordin. Chem. Rev., 2015, 256(19-20), 2129—2141 |
| [5] |
Kundu D., Adams B. D., Duffort V., Vajargah S. H., Nazar L. F., Nat. Energy, 2016, 1(10), 1—8 |
| [6] |
Ding Y., Tang Y., Zhu W., Xie Y., Chem. Soc. Rev., 2015, 44(5), 1101—1112 |
| [7] |
Peng J., Xu W., Teoh C. L., Han S., Kim B., Samanta A., Er J. C., Wang L., Yuan L., Liu X., Chang Y. T., J. Am. Chem. Soc., 2015, 137(6), 2336—2342 |
| [8] |
Xu H., Ling R., Gao R. F., Gao M. C., Zhu C. C., J. Food Saf. Qual., 2015, 6(3), 1011—1015 |
| [9] |
Liu M., Tan H., Liu Z., Wang W., Zeng W., Chin. J. Organ. Chem., 2013, 33(8), 1655 |
| [10] |
Wang Z., Yang J., Yang Y., Xu X., Li M., Zhang Y., Fang H., Xu H., Wang S., Chin. J. Org. Chem., 2018, 38(6), 1401—1413 |
| [11] |
Yang J., Fang H., Fang X., Xu X., Yang Y., Rui J., Wu C., Wang S., Xu H., Tetrahedron, 2016, 72(30), 4503—4509 |
| [12] |
Zhou X., Cheng J., Li L., Chen Q., You Y., Xiao H., Huang W., Sci. China Mater., 2018, 61(5), 752—757 |
| [13] |
Feng Y., Xu H. Y., Nie W. Y., Ying J. Y., Chin. Chem. Lett., 2010, 21(6), 753—757 |
| [14] |
Park M. J., Eom J. H., Kim H. U., Kim J. H., Kim J. Y., Lee C., Hwang D. H., Synthetic Met., 2014, 188, 46—52 |
| [15] |
Kowalewska A., Current Org. Chem., 2017, 21(14), 1243—1264 |
| [16] |
Xu Q., Li Z., Li H., Chemistry, 2016, 22(9), 3037—3043 |
| [17] |
Moein A., Kebritchi A., Silicon, 2023, 15, 5845—5875 |
| [18] |
Catherine M., Joseph B., Chem. commun., 2025, 2(4), 996—998 |
| [19] |
Xu Q. Q., Li Z. Q., Li H. R., Chem. Eur. J., 2016, 22, 3037—3043 |
| [20] |
Mabrouk M., Hammad S. F., Abdelaziz M. A., Mansour F. R., Chem. Central J., 2018, 12, 143 |
| [21] |
Cai Y. Q., Cui Q. Y., Zhang H. R., Ma X. L., Xue M. Q., Chem. Res. Chinese Universities, 2024, 40(51), 914—921 |
| [22] |
Chen L. X., Lin J., Huang B. H., Chem. J. Chinese Universities, 2022, 43(5), 1089—1098 |
| [23] |
陈良贤, 林娟, 黄宝华. 高等学校化学学报, 2022, 43(5), 1089—1098 |
| [24] |
Wang M., Yang J., Yang Y., Xu X., Li M., Zhang Y., Fang H., Xu H., Wang S., Chin. J. Org. Chem., 2018, 38, 1401—1413 |
| [25] |
Kumarasamy K., Devendhiran T., Chien W. J., Lin M. C., Ramasamy S. K., Yang J. J., Methods, 2024, 223, 35—44 |
江苏省高等学校自然科学研究面上项目(20KJD430008)
/
| 〈 |
|
〉 |