钴(Ⅱ)@膦酸锆复合物的制备及催化过一硫酸盐降解藏红T的性质
侯晴梓 , 王克菁 , 李春闯 , 邵倩 , 郝海军 , 徐庆红
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (11) : 69 -79.
钴(Ⅱ)@膦酸锆复合物的制备及催化过一硫酸盐降解藏红T的性质
Preparation of Co2+@Zirconium-phosphonate Composite and Its Catalytic Properties on Degradation of Safranin T
以骨架含有1,4,7,10-四氮杂环的膦酸锆ZrDP(由1,4,7,10-四膦酸亚甲基-1,4,7,10-四氮杂环十二烷与Zr4+在酸性水溶液中反应得到)为载体, 通过配位作用合成了一种Co2+负载型催化剂TTFA@Co2+@ZrDP (TTFA: 2-噻吩甲酰三氟丙酮), 并将该催化剂用于催化过一硫酸盐氧化降解藏红T反应. 研究发现, TTFA@Co2+@ZrDP的催化活性与其尺寸大小和负载的Co2+含量及分散度密切相关. 配体TTFA能够促进催化反应过程中电子的转移, 提升催化活性中心Co2+的催化能力. 在一定条件下, TTFA@Co2+@ZrDP催化过一硫酸盐氧化藏红T的降解率达到100%, 且催化剂具有良好的重复利用性.
A kind of composite catalyst TTFA@Co2+@ZrDP was prepared by coordination among Co2+, ZrDP(a kind of zirconium phosphonate with 1,4,7,10-tetraazaheterocyclic ring in skeleton) as carrier and TTFA(2-thiophene formyl trifluoroacetone) as chelating ligand. The catalytic activity of the composite was studied in the oxidation degradation reaction of safranin T in the presence of peroxymonosulfate as oxidant. The results indicate that the catalytic activity of TTFA@Co2+@ZrDP is closely related to its particle size, the content and dispersion of Co2+ supported, and TTFA is found to promote the transfer of electrons during the catalytic reaction and enhance the catalytic ability of the Co2+. 100% of Safranin T could be degraded by TTFA@Co2+@ZrDP under certain conditions in the presence of peroxymonosulfate and the catalyst has good reusability.
Zirconium phosphonate / Safranin T / Peroxymonosulfate / Degradation
| [1] |
Mu W. J., Chen B. H., Yu Q. H., Li X. L., Wei H. Y., Yang Y. C., Peng S. M. , J. Mol. Liq., 2021, 326, 115307 |
| [2] |
Fu S., Synthesis, Characterization and Catalytic Performance of a Novel Three⁃dimensional Hierarchially Zirconium Phosphonate ZrDP, Beijing University of Chemical Technology, Beijing, 2023 |
| [3] |
付山. 新型三维多孔膦酸锆ZrDP的合成、 表征及催化性能研究, 北京: 北京化工大学, 2023 |
| [4] |
Tian Y., Application Study on the Catalytic Degradation of Malachite Green by Fe(II) Coordinated Supported Zirconium Phosphonate, Beijing University of Chemical Technology, Beijing, 2024 |
| [5] |
田艺. Fe(II) 配位负载型膦酸锆催化降解孔雀石绿的应用研究, 北京: 北京化工大学, 2024 |
| [6] |
Shimomura O., Arisaka Y., Rahmawati A., Kabir S. M. M., Shizuma M., Ohtaka A., Molecules, 2024, 29(23), 5569 |
| [7] |
Zeng R. Q., Fu X. K., Sui Y., Chemistry, 2006, (11), 814—821 |
| [8] |
Ren Y. B., Mesoporous Zirconium Phosphonates as Drug Carriers for Oral Colon⁃specific Delivery of Biopharmaceutics, Liaoning Normal University, Dalian, 2012 |
| [9] |
任玉宝.介孔膦酸锆材料作为载体对生物药物的结肠定位传输, 大连: 辽宁师范大学, 2012 |
| [10] |
Zhou A. N., Jing N., Wang G. H., Xu Q. H., Ind. Eng. Chem. Res., 2018, 57(44), 15031—15038 |
| [11] |
Wu Z. F., Liu C. H., Teng Y. L., Xu J., J. Southwest Univ.(Natural Science Edition), 2011, 33(5), 50—54 |
| [12] |
吴宗方, 刘昌华, 藤瑛丽, 徐静. 西南大学学报(自然科学版), 2011, 33(5), 50—54 |
| [13] |
Lentz L. C., Kolpak A. M., Sci. Rep., 2017, 7(1), 1248 |
| [14] |
Zhou Y. J., Wang A. N., Wang Z. L., Chen M., Wang W., Sun L. Y., Liu X., RSC Advances, 2015, 5(114), 93969—93978 |
| [15] |
Sudarshan S., Harikrishnan S., RathiBhuvaneswari G., Alamelu V., Aanand S., Rajasekar A., Govarthanan M., J. Appl. Microbiol., 2023, 134(2), lxac064 |
| [16] |
Gao X., Pan H. B., Qiao C. F., Chen F. Y., Zhou Y., Yang W. H., Chem. J. Chinese Universities, 2020, 41(7), 1591—1599 |
| [17] |
高霞, 潘会宾, 乔成芳, 陈凤英, 周元, 杨文华. 高等学校化学学报, 2020, 41(7), 1591—1599 |
| [18] |
Sismanoglu S., Abdulmahdi S. S., Sahin K. H., Hani Y. B., Aghlara E., Akalin M. K., Int. J. Environ. Anal. Chem., 2025, 105(5), 981—1000 |
| [19] |
Zhang Q., Guo Z., Yuta S. Y., Shen S., Zhou X., Zhang G., J. Environ. Chem. Eng., 2025, 13(2), 116084 |
| [20] |
Zhang J. Q., Sun X. H., Gao Q. J., Wang H. X., Liang D. X., Liu Z. M., Han G. T., Jiang W., Chem. J. Chinese Universities, 2019, 40(3), 425—430 |
| [21] |
张巨擎, 孙晓晗, 高桥娇, 王海鑫, 梁大鑫, 刘志明, 韩光亭, 姜伟, 刘欢. 高等学校化学学报, 2019, 40(3), 425—430 |
| [22] |
Zeng X. C., Ye Y. T., Wu Z., Wei R. S., Liu H., Chem. J. Chinese Universities, 2024, 45(12), 20240337 |
| [23] |
曾湘楚, 叶雨婷, 武哲, 韦瑞松, 刘欢. 高等学校化学学报, 2024, 45(12), 20240337 |
| [24] |
Li J., Performance and Mechanism of Complex OMS⁃2 Catalysts Activated PMS for Degradation of Acid Orange 7, Wuhan Textile University, Wuhan, 2018 |
| [25] |
李军.复合型OMS-2活化PMS降解酸性橙7的性能与机理, 武汉: 武汉纺织大学, 2018 |
| [26] |
Sadiq M. U., Shah A., Nisar J., Shah I., Nanomaterials, 2023, 13(15), 2218 |
| [27] |
Deng X. R., Xiang X. Q., Li F. L., Fan C. Y., Liu Z. H., Chen Y., Luo Z. F., J. Isot., 2012, 25(3), 160—164 |
| [28] |
Xiao Z. H., Huang Y. C., Dong C. l., Xie C., Liu Z. J., Du S. Q., Chen W., Yan D. F., Tao L., Shu Z. W., Zhang G. H., Duan H. G., Wang Y. Y., Zou Y. Q., Chen R., Wang S. Y., J. Am. Chem. Soc., 2020, 142(28), 12087—12095 |
| [29] |
Guo R. N., Nengzi L. C., Chen Y., Li Y. H., Zhang X. Y., Cheng X. W., Chem. Eng. J., 2020, 398, 125676 |
| [30] |
Li J., Zhu J. L., Fang L. Z., Nie Y. L., Tian N., Tian X. K., Lu L. Q., Zhou Z. X., Yang C., Li Y., Sep. Purif. Technol., 2020, 240, 116617 |
| [31] |
Mo Y. M., Study on the Efficiency and Mechanism of Peroxymonosulfate Activation for Rhodamine B Degradation by Copper⁃based Catalyst, South China University of Technology, Guangzhou, 2023 |
| [32] |
莫苑敏.铜基催化材料活化过一硫酸盐降解罗丹明B的效能与机理研究, 广州: 华南理工大学, 2023 |
| [33] |
Li Y. B., Chen Z. L., Qi J. Y., Kang J., Shen J. M., Yan P. W., Wang W. Q., Bi L. B., Zhang X. X., Zhu X. W., Sep. Purif. Technol., 2021, 277, 119492 |
| [34] |
Zhao Y. L., Yuan X. Z., Jiang L. B., Li X. D., Zhang J. J., Wang H., Chem. Eng. J., 2020, 400, 125903 |
| [35] |
Ding D. H., Yang S. J., Chen L. W., Cai T. M., Chem. Eng. J., 2020, 392, 123725 |
国家自然科学基金(U1362113)
/
| 〈 |
|
〉 |