肖特基型Zn0.11Co0.42Ni0.47Se/ZnIn2S4化合物光解水析氢性能
袁华启 , 闫爱华 , 王恒 , 黄飞 , 高埜 , 苏自高 , 惠博磊 , 李楠
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (12) : 77 -87.
肖特基型Zn0.11Co0.42Ni0.47Se/ZnIn2S4化合物光解水析氢性能
Photocatalytic Water Splitting into Hydrogen Production Performance of Schottky-type Zn0.11Co0.42Ni0.47Se/ZnIn2S4 Composites
采用水热/水浴两步法构筑了肖特基型Zn0.11Co0.42Ni0.47Se/ZnIn2S4(ZCNSe/ZIS)化合物, 研究了其物相组成、 形貌结构、 界面结构、 能带排列和光热效应等对析氢性能的影响规律, 探讨了其析氢机理. 结果表明, 负载ZCNSe后, 样品表现出良好的光热效应, 有效提高了可见光及近红外光的吸收能力, 肖特基势垒促进了光生电荷的有效分离, 抑制了光生电子-空穴对复合, 光解水析氢性能得到有效提高, 最佳样品ZCNSe-4/ZIS的析氢速率达到6.89 mmol·g-1·h-1, 约为纯相ZIS(1.98 mmol·g-1·h-1)的3.48倍; 能带结构、 光电子动力学及光热吸收表征结果共同证实了肖特基型ZCNSe/ZIS化合物的光生载流子动力学机制.
Schottky-type Zn0.11Co0.42Ni0.47Se/ZnIn2S4(ZCNSe/ZIS) composites were constructed by a two-step hydrothermal/water-bath method. The influence of phase composition, morphological structure, interfacial structure, band alignment and photothermal effect on the hydrogen evolution reaction(HER) was investigated. The photocatalytic mechanism was discussed. The results indicate that ZCNSe/ZIS samples exhibit excellent photothermal effect, which effectively improves the visible-light and near-infrared-light absorption. Simultaneously, the Schottky contact facilitates the carrier separation and suppresses the electron-hole recombination. Consequently, the HER performance is enhanced markedly, and the optimal ZCNSe-4/ZIS sample achieves a hydrogen evolution rate of 6.89 mmol·g-1·h-1, which is ca. 3.48 times higher than that of pristine ZIS(1.98 mmol·g-1·h-1). Moreover, band structure, photoelectron dynamics and photothermal characterizations collectively corroborate the photogenerated carrier transfer mechanism in Schottky-type ZCNSe/ZIS composites.
多主元硒化物 / 光热效应 / ZnIn2S4 / 助催化材料 / 光解水
Multi-principal selenide / Photothermal effect / ZnIn2S4 / Cocatalyst / Photocatalytic water splitting
支持信息见 http: //www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20250242.
| [1] |
Meng F. P., Zhao F., Lin J. K., Zhao J. S., Zhang H. Y., Wang S. B., Acta Phys.⁃Chim. Sin., 2025, 41(8), 100095 |
| [2] |
孟凡鹏, 赵飞, 林靖恺, 赵金生, 张华阳, 王少彬. 物理化学学报, 2025, 41(8), 100095 |
| [3] |
Liu Y., Chen L., Yang L., Lan T., Wang H., Hu C., Han X., Liu Q., Chen J., Feng Z., Cui X., Fang Q., Wang H., Li L., Li Y., Xing H., Yang S., Zhao D., Li J., Green Energy Environ., 2024, 9, 217—310 |
| [4] |
Luo H., Zhu H., Xue K., Liu C., Chen N., Zhang Y., Yu L., J. Energy Chem., 2025, 104, 655—669 |
| [5] |
Yang Y. T., Zhang Y. Y., Dong Q. T., Chen Q. L., J. Chin. Ceram. Soc., 2024, 52(12), 3737—3747 |
| [6] |
杨玉婷, 张莹莹, 董庆桐, 陈全亮. 硅酸盐学报, 2024, 52(12), 3737—3747 |
| [7] |
Lee W. H., Lee C. W., Cha G. D., Lee B. H., Jeong J. H., Park H., Heo J., Bootharaju M. S., Sunwoo S. H., Kim J. H., Ahn K. H., Kim D. H., Hyeon T., Nat. Nanotechnol., 2023, 18, 754—762 |
| [8] |
Hu Q., Chen L. Y., Xie X. L., Qin Z. Z., Ji H. B., Su T. M., Acta Phys.⁃Chim. Sin., 2024, 40(11), 2406024 |
| [9] |
胡琴, 陈柳云, 谢新玲, 秦祖赠, 纪红兵, 苏通明. 物理化学学报, 2024, 40(11), 2406024 |
| [10] |
Wan J., Liu L., Wu Y., Song J., Liu J., Song R., Low J., Chen X., Wang J., Fu F., Xiong Y., Adv. Funct. Mater., 2022, 32, 2203252 |
| [11] |
Lu J. Y., Liu Z. P., Sheng X., Feng X. J., Chem. J. Chinese Universities, 2025, 46(5), 20240571 |
| [12] |
卢净宇, 刘志萍, 盛夏, 封心建. 高等学校化学学报, 2025, 46(5), 20240571 |
| [13] |
Luo D., Yin H., Li J., Tian B., Li H., Li Y., Li C., Zhang Y., Chen M., Jing Y., Chem. Eng. J., 2023, 457, 141172 |
| [14] |
Zhu T., Ye X., Zhang Q., Hui Z., Wang X., Chen S., J. Hazard. Mater., 2019, 367, 277—285 |
| [15] |
Shi X., Dai C., Wang X., Hu J., Zhang J., Zheng L., Mao L., Zheng H., Zhu M., Nat. Commun., 2022, 13, 1287 |
| [16] |
Du S., Lin S., Ren K., Li C., Zhang F., Appl. Catal. B: Environ. Energy, 2023, 328, 122503 |
| [17] |
Chhowalla M., Shin H. S., Eda G., Li L. J., Loh K. P., Zhang H., Nat. Chem., 2013, 5, 263—275 |
| [18] |
Wang X., Wang X., Huang J., Li S., Meng A., Li Z., Nat. Commun., 2021, 12, 4112 |
| [19] |
Yue W., Ye Z., Liu C., Xu Z., Wang L., Cao X., Yamashita H., Zhang J., Adv. Sci., 2024, 11, 2407092 |
| [20] |
Santoro S., Aquino M., Rizza C., Cupolillo A., Boukhvalov D. W., D'Olimpio G., Abramovich S., Agarwal A., Bar Sadan M., Politano A., Curcio E., Desalination, 2023, 563, 116730 |
| [21] |
Feng K., Wu K., Li K., Wang W., Gao S., Fan J., Sun T., Liu E., J. Colloid Interf. Sci., 2024, 676, 795—807 |
| [22] |
Li N., Li L., Qiu Y., Liu X., Zhang J., Gao Y., Ge L., Nanoscale, 2024, 16, 8151—8161 |
| [23] |
Liu X., Wang S., Cao J., Yu J., Dong J., Zhao Y., Zhao F., Zhang D., Pu X., J. Colloid Interf. Sci., 2024, 673, 463—474 |
| [24] |
Zhang Y., Li B., Zhou A., Li D., Shao X., Zhu L., Du Y., Cao L., Yang J., Int. J. Hydrogen Energ., 2024, 65, 186—195 |
| [25] |
Qian F., Peng L., Cao D., Jiang W., Hu C., Huang J., Zhang X., Luo J., Chen S., Wu X., Song L., Chen Q., Joule, 2024, 8, 2342—2356 |
| [26] |
Hu K., Xu Z., Liu Y., Huang F., Chem. Res. Chinese Universities, 2020, 36(6), 1102—1107 |
| [27] |
Pan B., Wu Y., Rhimi B., Qin J., Huang Y., Yuan M., Wang C., J. Energy Chem., 2021, 57, 1—9 |
| [28] |
Wei Y., Liu C., Ma E., Lu Z., Wang F., Song Y., Sun Q., Jie W., Wang T., Ceram. Int., 2020, 46, 21136—21140 |
| [29] |
Ali Z., Tang T., Huang X., Wang Y., Asif M., Hou Y., Energy Storage Mater., 2018, 13, 19—28 |
| [30] |
Sowbakkiyavathi E. S., Murugadoss V., Rajendra S. P., Alsalhi M. S., Dhandapani P., Angaiah S., J. Mol. Struct., 2024, 1305, 137735 |
| [31] |
Ding Y., Chen Y., Guan Z., Zhao Y., Lin J., Jiao Y., Tian G., ACS Appl. Mater. Interfaces, 2022, 14, 7888—7899 |
| [32] |
Ye Z., Jiang Y., Li L., Wu F., Chen R., Adv. Mater., 2020, 32, 2002168 |
| [33] |
Zhang L., Liang J., Yue L., Xu Z., Dong K., Liu Q., Luo Y., Li T., Cheng X., Cui G., Tang B., Alshehri A. A., Alzahrani K. A., Guo X., Sun X., Nano Res., 2022, 15, 304—309 |
| [34] |
Khaladkar S. R., Maurya O., Gund G., Sinha B., Dubal D., Deshmukh R., Kalekar A., ACS Appl. Mater. Interfaces, 2024, 16, 11408—11420 |
| [35] |
Wang C., Zhang X., Zhu Y., Zhu K., Luan X., Yang P., Electrochim. Acta, 2023, 454, 142386 |
| [36] |
Lu B., Li Z., Yin J., Zhu K., Ye K., Appl. Catal. B: Environ. Energy, 2024, 350, 123940 |
| [37] |
Yao S., Liu H., Zhang C., Zhang W., Ma C., Rehman Z. U., Shen X., J. Energy Storage, 2024, 78, 110087 |
| [38] |
Mu Z., Gao Y., Dong W., Li Z., Song Q., Huang H., Xing L., Zhang J., Wang W., Yu Q., Rare Metals, 2024, 43, 3702—3712 |
| [39] |
Jafarinejad A., Salavati⁃Niasari M., Monsef R., Bashiri H., Int. J. Hydrogen Energ., 2023, 48, 3440—3455 |
| [40] |
Liu Y., Xue W., Ye J., Zhang R., Rangappa A. P., Zhao J., Small, 2025, 21, 2409005 |
| [41] |
Chen X., Fu H., Wu L., Li X., Yang B., Li T., Gu F., Lei J., Li N., Luo H., Green Chem., 2022, 24, 5559—5569 |
| [42] |
Bi L., Gao X., Zhang L., Wang D., Zou X., Xie T., ChemSusChem, 2018, 11, 276—284 |
| [43] |
Zhao Y. T., Wang S. K., Zhao F. P., Chen Z. H., Zhao L. J., Zhang D. F., Ge B., Pu X. P., Chem. J. Chinese Universities, 2024, 45(5), 20240055 |
| [44] |
赵玉彤, 王仕凯, 赵福萍, 陈志合, 赵丽杰, 张大凤, 葛博, 蒲锡鹏. 高等学校化学学报, 2024, 45(5), 20240055 |
| [45] |
Dong L., Qu J., Zhang T., Zhu G., Ma N., Zhao C., Yuan Y., Guan X., Guo L., Chinese Chem. Lett., 2025, 36(3), 110397 |
| [46] |
Liu L., Hu J., Sheng Y., Akhoundzadeh H., Tu W., Siow W. J. S., Ong J. H., Huang H., Xu R., ACS Nano, 2024, 18, 26271—26280 |
| [47] |
Zhang N., Liu M., Wang Y., Gao J., Xing Z., Li Z., Wang N., Zhou W., Mater. Today Energy, 2023, 38, 101419 |
| [48] |
Liang Q., Gao W., Liu C., Xu S., Li Z., J. Hazard. Mater., 2020, 392, 122500 |
徐州市科技计划项目(KC21025)
国家自然科学基金(52002399)
/
| 〈 |
|
〉 |