磷酸掺杂型高温质子交换膜的研究进展与改进策略
Research Progress and Improvement Strategies of Phosphoric Acid-doped High-temperature Proton Exchange Membranes
质子交换膜燃料电池(PEMFC)具有能量转化效率高、 启动速度快及操作维护方便等突出优势. 在 120~250 ℃范围内运行的高温质子交换膜燃料电池(HT-PEMFC)无需依靠水进行质子传导, 可以有效简化水管理系统, 同时提升电极反应动力学并强化铂基电催化剂的抗中毒能力. 目前, 磷酸(PA)掺杂的聚苯并咪唑(PBI)膜是HT-PEMFC的首选隔膜材料, 但其面临着抗氧化稳定性不佳以及PA流失等关键挑战. 本文首先阐明了PA掺杂型高温质子交换膜(HT-PEM)的传输机制, 并基于近十年的研究进展对此类材料进行了系统分类; 然后, 重点剖析了HT-PEM面临的关键技术挑战及其应对策略, 并展望了未来的发展趋势.
Proton exchange membrane fuel cell(PEMFC) has outstanding advantages such as high energy conversion efficiency, fast start-up speed, easy operation and maintenance. In the temperature range of 120 to 250 ℃, the operation of high-temperature proton exchange membrane fuel cells(HT-PEMFC) does not rely on the presence of water for proton conduction. This can effectively simplify the water management system, enhance the kinetics of electrode reactions, and strengthen the anti-poisoning ability of platinum-based electrocatalysts. At present, phosphoric acid(PA)-doped polybenzimidazole(PBI) membrane is the preferred membrane material in HT-PEMFC, but it faces key challenges, such as poor antioxidant stability and PA loss. In this review, the transport mechanism of PA-doped high-temperature proton exchange membranes(HT-PEM) is first clarified, and such materials are systematically classified based on the research progress in the past 10 years. Finally, the key technical challenges and coping strategies of HT-PEM are analyzed, and the future development trend is prospected.
Proton exchange membrane / Fuel cell / Antioxidant stability / Phosphoric acid loss
| [1] |
Thomas J., Edwards P., Dobson P., Owen G., J. Energy Chem., 2020, 51, 405—415 |
| [2] |
Zhu Y. H., Liu Y., Zhang F., Fan Z. H., Kang Z. Y., Wan X. H., Wang G. X., Li J., Tian C., Lei H., Wang W. N., Tian X. L., Chem. Res. Chinese Universities, 2025, 41(3), 484—494 |
| [3] |
Hou M., Yi B. L., J. Electrochem., 2012, 18(1), 1—13 |
| [4] |
侯明, 衣宝廉. 电化学, 2012, 18(1), 1—13 |
| [5] |
Meng H., Song J., Guan P., Wang H., Zhao W., Zou Y., Ding H., Wu X., He P., Liu F., Zhang Y., J. Power Sources, 2024, 602, 234205 |
| [6] |
Cheng H. L., Han K. H., Li A., Tao L. J., Yi F. Y., Sun J. J., Chem. J. Chinese Universities, 2024, 45(8), 20240217 |
| [7] |
程海龙, 韩康辉, 李奥, 陶璐静, 易飞扬, 孙娇娇. 高等学校化学学报, 2024, 45(8), 20240217 |
| [8] |
Wang S., Jiang S. P., Natl. Sci. Rev., 2017, 4(2), 163—166 |
| [9] |
Dong W. Y., Pan J. X., Guo W., Chem. J. Chinese Universities, 2024, 45(2), 20230397 |
| [10] |
董文雅, 潘建欣, 郭伟. 高等学校化学学报, 2024, 45(2), 20230397 |
| [11] |
Gong L., Tao L., Wang L., Fu X., Wang S., Chinese J. Catal., 2025, 68, 155—176 |
| [12] |
Aili D., Henkensmeier D., Martin S., Singh B., Hu Y., Jensen J. O., Cleemann L. N., Li Q., Electrochem. Energy Rev., 2020, 3(4), 793—845 |
| [13] |
Wang Z. Q., Yang L. L., Sun H., Chem. Ind. Eng. Pro., 2020, 39(6), 20 |
| [14] |
王子乾, 杨林林, 孙海. 化工进展, 2020, 39(6), 20 |
| [15] |
Han S., Lv Y., Yang M. Y., Li Y. P., Tan C., Liu F., Yang H., Chu J. N., Liu M., Zhu C. Y., Gao R., Song Y. J., Chem. Res. Chinese Universities, 2025, 41(5), 1217—1224 |
| [16] |
Adamski M., Peressin N., Holdcroft S., Mater. Adv., 2021, 2(15), 4966—5005 |
| [17] |
Mauritz K. A., Moore R. B., Chem. Rev., 2004, 104(10), 4535—4585 |
| [18] |
Amiinu I. S., Li W., Wang G., Tu Z., Tang H., Pan M., Zhang H., Electrochim. Acta, 2015, 160, 185—194 |
| [19] |
Yang J., Xu H., Li J., Gong K., Yue F., Han X., Wu K., Shao P., Fu Q., Zhu Y., Xu W., Huang X., Xie J., Wang F., Yang W., Zhang T., Xu Z., Feng X., Wang B., Science, 2024, 385(6713), 1115—1120 |
| [20] |
Ma W., Zhao C., Lin H., Zhang G., Ni J., Wang J., Wang S., Na H., J. Power Sources, 2011, 196(22), 9331—9338 |
| [21] |
Ma W., Zhao C., Yang J., Ni J., Wang S., Zhang N., Lin H., Wang J., Zhang G., Li Q., Na H., Energy Environ. Sci., 2012, 5(6), 7617—7625 |
| [22] |
Staiti P., Minutoli M., J. Power Sources, 2001, 94(1), 9—13 |
| [23] |
Wu X., Scott K., Fuel Cells, 2012, 12(4), 583—588 |
| [24] |
Li Q., Jensen J. O., Savinell R. F., Bjerrum N. J., Prog. Polym. Sci., 2009, 34(5), 449—477 |
| [25] |
Wainright J. S., Wang J. T., Weng D., Savinell R. F., Litt M., J. Electrochem. Soc., 1995, 142(7), L121 |
| [26] |
Melchior J. P., Majer G., Kreuer K. D., Phys. Chem. Chem. Phys., 2017, 19(1), 601—612 |
| [27] |
Vogel H., Marvel C. S., Prog. Polym. Sci., 1961, 50(154), 511—539 |
| [28] |
Seselj N., Aili D., Celenk S., Cleemann L. N., Hjuler H. A., Jensen J. O., Azizi K., Li Q., Chem. Soc. Rev, 2023, 52(12), 4046—4070 |
| [29] |
Asensio J. A., Gómez⁃Romero P., Fuel Cells, 2005, 5(3), 336—343 |
| [30] |
Wu A., Liu J., Wei G., Liu D., Wang L., J. Power Sources, 2022, 545, 231925 |
| [31] |
Wang S., Zhao C., Ma W., Zhang G., Liu Z., Ni J., Li M., Zhang N., Na H., J. Membr. Sci., 2012, 411/412, 54—63 |
| [32] |
Luo Y., Yu D., Gao T., Bai W., Zhang S., Guan X., Wu W., Wang S., Int. J. Hydrogen Energy, 2024, 77, 784—794 |
| [33] |
Cao K. Y., Peng J. W., Li H. B., Shi C. Y., Wang P., Liu B. J., Chem. J. Chinese Universities, 2021, 42(6), 2049—2055 |
| [34] |
曹凯悦, 彭金武, 李宏斌, 石埕荧, 王鹏, 刘佰军. 高等学校化学学报, 2021, 42(6), 2049—2055 |
| [35] |
Dai J., Zhang Y., Gong C., Wan Y., Zhuang Y., Chem. Eng. J., 2023, 466, 143151 |
| [36] |
Xu Z., Wang Q., Guo L., Li Y., Wang J., Yu S., Liao J., Xu Y., Shen J., Adv. Funct. Mater., 2023, 34, 2310762 |
| [37] |
Zhang N., Wang B., Zhao C., Wang S., Zhang Y., Bu F., Cui Y., Li X., Na H., J. Mater. Chem. A, 2014, 2(34), 13996—14003 |
| [38] |
Li Q., Liu L., Liang S., Li Q., Jin B., Bai R., Polym. Chem., 2014, 5(7), 2425—2432 |
| [39] |
Wu W., Zou G., Fang X., Cong C., Zhou Q., Ind. Eng. Chem. Res., 2017, 56(37), 10227—10234 |
| [40] |
Zhao Y. Y., Tsuchida E., Choe Y. K., Wang J., Ikeshoji T., Ohira A., J. Membr. Sci., 2015, 487, 229—239 |
| [41] |
Pang Y., Duan Y., Li Q., Liu B., Hu X., Liu Q., Zhao C., J. Membr. Sci., 2023, 686, 121999 |
| [42] |
Yamamoto T., Hayashi Y., Yamamoto A., Bull. Chem. Soc. Jpn, 2006, 51(7), 2091—2097 |
| [43] |
Li T. T., Li H. B., Liu B. H., Zhao C. J., Li H. L., Prog. Chem., 2023, 35(11), 1559—1578 |
| [44] |
李婷婷, 李海宾, 刘炳辉, 赵成吉, 李昊龙. 化学进展, 2023, 35(11), 1559—1578 |
| [45] |
Bai Y., Xiao M., Wang C., Wang S., Meng Y., Miyatake K., Adv. Energy Mater., 2024, 14(33), 2400751 |
| [46] |
Holmes T., Skalski T. J. G., Adamski M., Holdcroft S., Chem. Mater., 2019, 31(4), 1441—1449 |
| [47] |
Peressin N., Adamski M., Schibli E. M., Ye E., Frisken B. J., Holdcroft S., Macromolecules, 2020, 53(8), 3119—3138 |
| [48] |
Lee K., Spendelow J., Choe Y., Fujimoto C., Kim Y., Nat. Energy, 2016, 1(9), 16120 |
| [49] |
Wang J., Zhao Y., Setzler B. P., Rojas⁃Carbonell S., Ben Yehuda. C., Amel A., Page M., Wang L., Hu K., Shi L., Gottesfeld S., Xu B., Yan Y., Nat. Energy, 2019, 4(5), 392—398 |
| [50] |
Jin Y., Wang T., Che X., Dong J., Li Q., Yang J., J. Power Sources, 2022, 526, 231131 |
| [51] |
Bai H., Peng H., Xiang Y., Zhang J., Wang H., Lu S., Zhuang L., J. Power Sources, 2019, 443, 227219 |
| [52] |
Liu B., Duan Y., Li T., Pang Y., Liu Q., Li Q., Hu X., Zhao C., J. Membr. Sci., 2024, 692, 122273 |
| [53] |
Liu B., Mu T., Liu Q., Pang Y., Lou J., Cao J., Zhao C., J. Membr. Sci., 2025, 733, 124327 |
| [54] |
Feng X., Zhu J., Jin J., Wang Y., Zhang Y., van der Bruggen B., Prog. Mater Sci., 2024, 144, 101285 |
| [55] |
Carta M., Malpass⁃Evans R., Croad M., Rogan Y., Jansen J C., Bernardo P., Bazzarelli F., Mckeown N. B., Science, 2013, 339(6117), 303—307 |
| [56] |
Chen X., Wu L., Yang H., Qin Y., Ma X., Li N., Angew. Chem. Int. Ed., 2021, 60(33), 17875—17880 |
| [57] |
Olvera L. I., Zolotukhin M. G., Hernández⁃Cruz O., Fomine S., Cárdenas J., Gaviño⁃Ramírez R. L., Ruiz⁃Trevino F. A., ACS Macro Lett., 2015, 4(5), 492—494 |
| [58] |
Yang S., Li H., Zou W., Ling R., Ma X., Chen S., Yang Z., Xu T., JACS Au, 2024, 4(8), 3277—3283 |
| [59] |
Guo Z., Perez⁃Page M., Chen J., Ji Z., Holmes S. M., J. Energy Chem., 2021, 63, 393—429 |
| [60] |
Li J., Yang C., Zhang X., Xia Z., Wang S., Yu S., Sun G., J. Mater. Chem. A, 2023, 11(34), 18409—18418 |
| [61] |
Tang H., Geng K., Wu L., Liu J., Chen Z., You W., Yan F., Guiver M. D., Li N., Nat. Energy, 2022, 7(2), 153—162 |
| [62] |
Li J., Yang C., Lin H., Huang J., Wang S., Sun G., J. Energy Chem., 2024, 92, 572—578 |
| [63] |
Liu B., Liu Q., Pang Y., Mu T., Zhao C., Macromolecules, 2024, 57(21), 10338—10348 |
| [64] |
Kannan A., Aili D., Cleemann L. N., Li Q., Jensen J. O., Int. J. Hydrogen Energy, 2020, 45(1), 1008—1017 |
| [65] |
Li W., Liu W., Zhang J., Wang H., Lu S., Xiang Y., Adv. Funct. Mater., 2023, 33(6), 2210036 |
| [66] |
Zeng L., Dong D., Lu J., He K., Liu X., Wang J., Wei Z., Gresil M., Ratcliffe J., Li Z., Wang H., Adv. Funct. Mater., 2025, 35(31), 2424662 |
| [67] |
Zhang L., Liu M., Zhu D., Tang M., Zhu T., Gao C., Huang F., Xue L., Nat. Commun., 2024, 15(1), 3409 |
| [68] |
Lee S., Seong J., Jo Y., Hwang S., Gwak G., Park Y., Kim Y., Lim K., Park H., Jang J., Kim H., Nam S., Lee S. Y., Nat. Energy, 2024, 9(7), 849—861 |
| [69] |
Liao J., Li Q., Rudbeck H., Jensen J., Chromik A., Bjerrum N., Kerres J., Xing W., Fuel Cells, 2011, 11(6), 745—755 |
| [70] |
Ju Q., Chao G., Wang Y., Lv Z., Geng K., Li N., J. Membr. Sci., 2023, 686, 121970 |
| [71] |
Liu B., Duan Y., Pang Y., Li Q., Zhao C., Chem. Eng. J., 2023, 477, 146955 |
| [72] |
Wang J., Dai Y., Wan R., Wei W., Xu S., Zhai F., He R., Chem. Eng. J., 2021, 413, 127541 |
| [73] |
Duan Y., Pang Y., Liu B., Wu L., Hu X., Li Q., Zhao C., ACS Sustainable Chem. Eng., 2023, 11(13), 5270—5283 |
| [74] |
Bu F., Zhang Y., Hong L., Zhao W., Li D., Li J., Na H., Zhao C., J. Membr. Sci., 2018, 545, 167—175 |
| [75] |
Hu X., Ao Y., Gao Y., Liu B., Zhao C., J. Membr. Sci., 2023, 687, 122102 |
| [76] |
Liu B., Liu Q., Pang Y., Duan Y., Zhao C., Adv. Funct. Mater., 2025, 35(1), 2408291 |
| [77] |
Yue Z., Cai Y. B., Xu S., Int. J. Hydrogen Energy, 2016, 41(24), 10421—10429 |
| [78] |
Zhang W., Wang W., Xie D., Li J., Li H., Dai J., Tang Y., Yang T., Jin W., Zhou P., Gong C., J. Power Sources, 2024, 623, 235410 |
国家自然科学基金(22579067)
/
| 〈 |
|
〉 |