CuCl2修饰WO3对超低浓度H2S的高灵敏度检测
王斌 , 胡梦洁 , 李佩林 , 王文静 , 杨赢 , 朱连杰
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (12) : 8 -15.
CuCl2修饰WO3对超低浓度H2S的高灵敏度检测
Highly Sensitive Detection on Trace H2S Gas over CuCl2-modified WO3
采用溶剂热法合成了由纳米线构成的蜂窝状WO3, 再分别与1%(与WO3的摩尔比)的CuO或CuCl2混合并研磨处理后, 得到CuO-WO3和Cu2+-WO3复合材料. 对WO3, CuO-WO3和Cu2+-WO3样品的形貌、 组成、 价态及能带结构等进行了表征, 研究了其对H2S气体的传感性能. 结果表明, 纯WO3对H2S气体的响应值较低, 仅为2.8, 而两种复合材料对H2S检测的灵敏度均显著提高, 其中Cu2+-WO3传感器的响应值最高(67.6), 是纯WO3传感器的24.1倍, 且该传感器可实现对超低浓度H2S气体(20 μg/kg)的有效检测, 表明其对H2S气体检测具有高灵敏度, 这可能是由于铜离子掺杂大幅提高了WO3表面的电荷转移效率及分离程度、 较低的带隙能导致更多电子参与气体传感反应及Cu2+与H2S之间发生氧化还原反应, 从而大幅提高了对H2S的传感性能.
The honeycomb-like porous WO3 assembled by nanowires was synthesized by solvothermal method. After mixing and grinding with 1%(molar ratio to WO3) of CuO or CuCl2, the CuO-WO3 and Cu2+-WO3 composites were obtained. The morphology, composition, valence state and energy band structure etc. of the WO3, CuO-WO3 and Cu2+-WO3 samples were characterized systematically and their gas sensing performances to H2S were studied. The results showed that the response value of the pure WO3 was rather low, only 2.8, while the sensitivities of the two composite sensors were significantly increased. Among the three sensors, the Cu2+-WO3 sensor had the highest response value to H2S, 67.6, which is 24.1 times that of the pure WO3 sensor. Moreover, the Cu2+-WO3 sensor can effectively detect extremely low concentration of H2S gas, 20 μg/kg, indicating its superior sensitivity for H2S detection. This might be due to copper ion doping enhancing the charge transfer efficiency/separation, narrowed band gap and the redox reactions between the Cu2+ and H2S, leading to significantly improved H2S sensing performance.
WO3复合物 / 铜离子掺杂 / H2S / 气体传感 / 传感机理
WO3 composite / Cu2+ ion doping / H2S / Gas sensing / Sensing mechanism
| [1] |
Srivastava S., Gangwar A. K., Kumar A., Gupta G., Singh P., Mater. Res. Bull., 2023, 165, 112330 |
| [2] |
Shin J., Choi S. W., Kim C., Park J., Roh J. W., Hwang J. Y., Mirzaei A., Jin C., Choi M. S., J. Alloys Compd., 2025, 1021, 179655 |
| [3] |
Jin Z. D., Mou Y., Zhao J. B., Chen C. Z., Zhou H., Xiang N., Wang F. L., Wang Z, Liu J. R., Wu L. L., Sens. Actuators B, 2024, 401, 135026 |
| [4] |
Xie T., Sullivan N., Steffens K., Wen B. M., Liu G. N., Debnath R., Davydov A., Gomez R., Motayed A., J. Alloys Compd., 2015, 653, 255—259 |
| [5] |
Ramanavicius S., Tereshchenko A., Karpicz R., Ratautaite V., Bubniene U., Maneikis A., Jagminas A., Ramanavicius A., Sensors, 2019, 20(1), 74 |
| [6] |
Oleksenko L. P., Maksymovych N. P., Sokovykh E. V., Matushko I. P., Russ. J. Phys. Chem. A, 2014, 88, 831—835 |
| [7] |
Yang X. H., Property and Application of WO3⁃based Gas Sensor Film Materials, Chongqing University, Chongqing, 2008 |
| [8] |
杨晓红. WO3基气敏传感器薄膜材料的性质及应用研究, 重庆: 重庆大学, 2008 |
| [9] |
Wang X. X., Yang N. J., Wan Q. J., Wang X., Sens. Actuators B, 2007, 128(1), 83—90 |
| [10] |
Tamaki J., Sensor Lett., 2005, 3(2), 89—98 |
| [11] |
Cho C. H., Cha H. Y., Sung H. K., J. Semicond. Tech. Sci., 2018, 18(2), 139—145 |
| [12] |
Maryamova I., Druzhinin A., Lavitska E., Gortynska I., Yatzuk Y., Sens. Actuators A, 2000, 85(1—3), 153—157 |
| [13] |
Hongsith N., Wongrat E., Kerdcharoen T., Choopun S., Sens. Actuators B, 2010, 144(1), 67—72 |
| [14] |
Cao E. S., Song G. Q., Guo Z. Q., Zhang Y. J., Hao W. T., Sun L., Nie Z. Q., Mater. Lett., 2020, 261, 126985 |
| [15] |
Park S., Sun G. J., Kheel H., Choi S., Lee C., J. Nanosci. Nanotechnol., 2016, 16(8), 8589—8593 |
| [16] |
Yang J. I., Lim H., Han S. D., Sens. Actuators B, 1999, 60(1), 71—77 |
| [17] |
Ramirez J. L., Annanouch F. E., Llobet E., Briand D., Sens. Actuators B, 2018, 258, 952—960 |
| [18] |
Hadifakoor A., Nikbin S., Kavei G., Bull. Mater. Sci., 2018, 41(2), 45 |
| [19] |
Park J., Lee J. H., Choi M. S., Huh J. S., Chemosensors, 2023, 11(2), 140 |
| [20] |
Liu S. P., Liu Y. C., Wang W., Chem. J. Chinese Universities, 2015, 36(6), 1202—1207 |
| [21] |
刘树萍, 刘益春, 王薇, 高等学校化学学报, 2015, 36(6), 1202—1207 |
| [22] |
Jiang L. Q., Wei K., Wang L., Xiao H. D., Yang J. X., Hu Z. Y., Liu J., Li Y., Lv M. Y., Su B. L., Chem. J. Chinese Universities, 2021, 42(9), 2996—3004 |
| [23] |
江莉琪, 危科, 王浪, 肖厚地, 杨九香, 胡执一, 刘婧, 李昱, 吕明云, 苏宝连. 高等学校化学学报, 2021, 42(9), 2996—3004 |
| [24] |
Li Y. J., Cao T. P., Shao C. L. Wang C. H., Chem. J. Chinese Universities, 2012, 33(7), 1552—1558 |
| [25] |
李跃军, 曹铁平, 邵长路, 王长华. 高等学校化学学报, 2012, 33(7), 1552—1558 |
| [26] |
Zhang Y. X., Construction of LaFeO3⁃based Composites and Gas Sensing Performance to Acetone, Taiyuan University of Technology, Taiyuan, 2023 |
| [27] |
张翼旋. LaFeO3基复合体系构建及丙酮气敏性能研究, 太原: 太原理工大学, 2023 |
| [28] |
Velmurugan S., Yang T. C. K., Juan J. C., Chen J. N., J. Colloid Interf. Sci., 2021, 596, 108—118 |
| [29] |
Chaudhury P. K., Dubey P., Saxena M., Sarkar S., Adv. Sci. Lett., 2011, 4(2), 558—560 |
| [30] |
Szilágyi I. M., Fórizs B., Rosseler O., Szegedi A., Nemeth P., Kkiraly P., Tarkanyi G., Vajna B., Varga⁃Josepovits K., László K., Tóth A. L., Baranyai P., Leskelä M., J. Catal., 2012, 294, 119—127 |
| [31] |
Ravi S., Kaiser A. B., Bumby C. W., J. Appl. Phys, 2015, 118, 085311 |
| [32] |
Li P. L., Chen X., Wang B., Gao Y. W., Wo J. M., Zhu L. J., ACS Appl. Nano Mater., 2025, 8(26), 13532—13541 |
| [33] |
Liu G. K., Zhu L. J., Yu Y. M., Qiu M., Gao H. J., Chen D. Y., J. Alloys Compd., 2021, 858, 157638 |
| [34] |
Wang W. W., Zhu L. J., Lv P. Z., Liu G. K., Yu Y. M., Li J. F., ACS Appl. Mater. Interfaces, 2018, 10(43), 37287—37297 |
国家自然科学基金(22275140)
/
| 〈 |
|
〉 |