调控交联核心尺寸提升准固态染料敏化太阳能电池聚合物电解质的低温性能
林剑飞 , 李雅楠 , 王莹琳 , 张昕彤
高等学校化学学报 ›› 2026, Vol. 47 ›› Issue (01) : 174 -181.
调控交联核心尺寸提升准固态染料敏化太阳能电池聚合物电解质的低温性能
Tailoring the Cross-linking Core Size Toward Enhanced Low-temperature Performance of Polymer Electrolytes for Quasi-solid-state Dye-sensitized Solar Cells
以不同尺寸的具有星形拓扑结构的交联单元(乙氧基化三羟甲基丙烷三丙烯酸酯、 倍半硅氧烷和纳米氧化锆)为交联核心, 与聚乙二醇二丙烯酸酯(PEGDA)进行化学交联, 构建了3种聚合物网络(EP, PP和ZP), 并将其用于准固态染料敏化太阳能电池(DSSCs). 结果表明, 增大交联核心尺寸的策略能有效增加聚合物自由体积, 降低其玻璃化转变温度, 进而改善其电化学性能.在-40 ℃的低温环境下, ZP器件的光电转换效率相比EP器件提升了37.4%.
This study employed cross-linking units with star-like topology of varying sizes ethoxylated trimethylolpropane triacrylate(ETPTA), polyhedral oligomeric silsesquioxanes(POSS) and nano-zirconia) as cross-linking cores to chemically cross-link with poly(ethylene glycol) diacrylate(PEGDA), constructing three polymer networks(EP, PP and ZP) for application in quasi-solid-state dye-sensitized solar cells(DSSCs). The results demonstrate that the strategy of increasing the size of the cross-linking core effectively enlarges the free volume of the polymer, reduces its glass transition temperature, and consequently enhances its low-temperature electrochemical performance. At a low temperature of -40 ℃, the power conversion efficiency(PCE) of the ZP-based device shows a significant increase of 37.4% compared to the EP-based device. This research provides a novel and effective strategy for developing quasi-solid-state electrochemical devices suitable for high altitude environment.
准固态染料敏化太阳能电池 / 聚合物凝胶电解质 / 化学交联 / 低温电化学性能
Quasi-solid-state dye-sensitized solar cell / Gel polymer electrolyte / Chemical cross-linking / Low temperature electrochemical performance
| [1] |
Ren W., Ding C., Fu X., Huang Y., Energy Storage Mater., 2021, 34, 515—535 |
| [2] |
Wan H., Xu J., Wang C., Nat. Rev. Chem., 2024, 8(1), 30—44 |
| [3] |
Han L., Wang L., Chen Z., Kan Y., Hu Y., Zhang H., He X., Adv. Funct. Mater., 2023, 33(32), 2300892 |
| [4] |
Dai H., Zhang G., Rawach D., Fu C., Wang C., Liu X., Dubois M., Lai C., Sun S., Energy Storage Mater., 2021, 34, 320—355 |
| [5] |
Peng X., Liu H., Yin Q., Wu J., Chen P., Zhang G., Liu G., Wu C., Xie Y., Nat. Commun., 2016, 7(1), 11782 |
| [6] |
Wu C., Li R., Wang Y., Lu S., Lin J., Liu Y., Zhang X., Chem. Commun., 2020, 56(69), 10046—10049 |
| [7] |
Lin J., Wang Y., Li Y., Shi Y., Guo X., Wang L., Liu Y., Zhang X., Solar RRL, 2023, 7(20), 2300464 |
| [8] |
Shi Y., Wang Y., Lin J., Li Y., Guo X., Jin C., Wang Y., Zhang X., J. Power Sources, 2025, 628, 235876 |
| [9] |
Armand M., Tarascon J. M., Nature, 2008, 451(7179), 652—657 |
| [10] |
Gupta A., Manthiram A., Adv. Energy Mater., 2020, 10(38), 2001972 |
| [11] |
Zhang N., Deng T., Zhang S., Wang C., Chen L., Wang C., Fan X., Adv. Mater., 2022, 34(15), 2107899 |
| [12] |
Swiderska⁃Mocek A., Gabryelczyk A., J. Phys. Chem. C, 2023, 127(38), 18875—18890 |
| [13] |
Liu Y., Zhang D., Luo L., Li Z., Lin H., Liu J., Zhao Y., Hu R., Zhu M., Energy Storage Mater., 2024, 70, 103548 |
| [14] |
Liu H., Liu C., Zhou Y., Zhang Y., Deng W., Zou G., Hou H., Ji X., Energy Storage Mater., 2024, 71, 103575 |
| [15] |
Jin C., Yang C., Xie L., Mi H., Yin H., Xu B., Guo F., Qiu J., Adv. Energy Mater., 2025, 15(4), 2402843 |
| [16] |
Song Y., Su M., Xiang H., Kang J., Yu W., Peng Z., Wang H., Cheng B., Deng N., Kang W., Small, 2025, 21(3), 2408045 |
| [17] |
Wu J., Lan Z., Hao S., Li P., Lin J., Huang M., Fang L., Huang Y., Pure Appl. Chem., 2008, 80(11), 2241—2258 |
| [18] |
Wu J. H., Lan Z., Lin J. M., Huang M. L., Hao S. C., Sato T., Yin S., Adv. Mater., 2007, 19(22), 4006—4011 |
| [19] |
Qu T., Nan G., Ouyang Y., Bieketuerxun B., Yan X., Qi Y., Zhang Y., Polymers, 2023, 15(21), 4268 |
| [20] |
Jagarlapudi S. S., Cross H. S., Das T., Goddard III W. A., ACS Appl. Mater. Interfaces, 2023, 15(20), 24858—24867 |
| [21] |
White R. P., Lipson J. E. G., Macromolecules, 2016, 49(11), 3987—4007 |
| [22] |
Chen S., Feng F., Yin Y., Che H., Liao X. Z., Ma Z. F., J. Power Sources, 2018, 399, 363—371 |
| [23] |
Tosa M., Hashimoto K., Kokubo H., Ueno K., Watanabe M., Soft Matter, 2020, 16(17), 4290—4298 |
| [24] |
Wang W., Yang Y., Yang J., Zhang J., Angew. Chem. Int. Ed., 2024, 63, e202400091 |
| [25] |
Lv K., Zhang W., Zhang L., Wang Z. S., ACS Appl. Mater. Interfaces, 2016, 8(8), 5343—5350 |
| [26] |
Kang Y., Cheong K., Noh K. A., Lee C., Seung D. Y., J. Power Sources, 2003, 119, 432—437 |
| [27] |
Zhou Y., Xiang W., Chen S., Fang S., Zhou X., Zhang J., Lin Y., Chem. Commun., 2009, (26), 3895—3897 |
| [28] |
Lu Y., Zhao C. Z., Huang J. Q., Zhang Q., Joule, 2022, 6(6), 1172—1198 |
| [29] |
Quattrocchi E., Wan T. H., Belotti A., Kim D., Pepe S., Kalinin S. V., Ahmadi M., Ciucci F., Electrochim. Acta, 2021, 392, 139010 |
| [30] |
Hong J., Bhardwaj A., Bae H., Kim I. H., Song S. J., J. Electrochem. Soc., 2020, 167, 114504 |
国家自然科学基金(62074031)
国家自然科学基金(52273236)
国家自然科学基金(U22A2078)
国家自然科学基金(12374391)
/
| 〈 |
|
〉 |