苯甘氨酸修饰的聚(二苯基乙炔): 条件依赖的手性传递与聚集诱导发光增强效应
胡浩渊 , 胡广泽 , 刘雄 , 陈曼玉 , 张浩可 , 孙景志 , 唐本忠
高等学校化学学报 ›› 2026, Vol. 47 ›› Issue (01) : 213 -221.
苯甘氨酸修饰的聚(二苯基乙炔): 条件依赖的手性传递与聚集诱导发光增强效应
Phenylglycine Modified Poly(diphenylacetylene): Condition-dependent Chiral Transmission and Aggregation-induced Emission Enhancement
采用聚合后修饰的方法制备了D-/L-苯甘氨酸侧链修饰的聚二苯基乙炔衍生物(P-D和P-L), 运用综合光谱技术对其结构进行了表征.通过精确调控聚合物中苯甘氨酸的种类和含量, 使产物表现出独特的组成和 溶剂依赖行为, 均聚物P-L和P-D均未检测到圆二色性(CD)信号, 而部分被苯甘氨酸取代的聚合物表现出依赖于共聚物组成和溶剂的诱导CD信号. 例如, 在四氢呋喃(THF)和二氯甲烷(DCM)中的P-L(1∶19)(括号中的比值表示被L-/D-苯甘氨酸取代的侧基与活化酯侧基的摩尔比)、 在THF和二甲基亚砜(DMSO)混合溶剂中的P-D (1∶19)和P-D(1∶39). 除旋光活性外, 这些聚二苯基乙炔衍生物还表现出典型的聚集诱导发光增强(AEE)行为. 在THF/DMSO混合溶剂中, P-L(1∶19)的荧光强度增强超过220%. 这与侧链组成和溶剂相关的手性传递及AEE效应与苯甘氨酸侧链之间的强相互作用有关, 导致聚二苯基乙炔主链的构象硬化, 阻碍了手性从侧链向主链的传递. 同时, 强的侧链相互作用限制了分子内运动对激发态能量的耗散, 导致荧光增强, 这些实验结果与密度泛函理论(DFT)和分子动力学(MD)模拟结果一致.
Polydiphenylacetylenes(PDPAs) modified with D-/L-phenylglycine side chains have been prepared by post-polymerization modification strategy and their structures were well characterized using multiple spectroscopic technologies. Taking the advantage of the activated ester strategy, the species and content of the D-/L-phenylglycines in the polymers can be well-controlled. The chirality of these phenylglycine-modified PDPAs exhibits unique composition and solvent-dependent behaviors. No circular dichroism(CD) signals have been recorded for the homo-polymers P-L and P-D(with complete substitution by L- and D-phenylglycine) in different solvents. While some of the partially phenylglycine-substituted PDPAs exhibit induced CD signals, for example, P-L(1∶19)(the digitals in the brackets stand for the ratio of the L- or D-phenylglycine to activated ester groups) in tetrahydrofuran(THF) and dichloromethane(DCM), P-D(1∶19) and P-D(1∶39) in the mixtures of THF and dimethyl sulfone(DMSO). In addition to their chiral characteristics, these PDPAs show typical aggregation-enhanced emission(AEE) behavior. Over 220% enhancement in fluorescence intensity has been recorded for P-L(1∶19) in THF/DMSO mixture solvent. Both of the substitution-/solvent-dependent chirality transmission and AEE behaviors can be associated with the strong interactions between the phenylglycine side chains, which are non-facile to the conformational change of the polydiphenylacetylene backbone and hinder the chirality transmission from side to main chains. Meanwhile, the strong interactions reduce the dissipation of the excited state energy by intramolecular motions and induce the fluorescence enhancement. These observations are not only experimentally consistent, but also theoretically compliant with the results of density function theory(DFT) and molecular dynamics(MD) simulations.
聚二苯基乙炔 / 聚合后修饰 / 圆二色性 / 聚集诱导发光增强 / 氢键
Polydiphenylacetylenes / Post-polymerization modification / Circular dichroism / Aggregation-enhanced emission / Hydrogen bond
支持信息见 http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20250292.
| [1] |
Salikolimi K., Praveen V. K., Sudhakar A. A., Yamada K., Horimoto N. N., Ishida Y., Nat. Commun., 2020, 11, 2311 |
| [2] |
Anger E., Iida H., Yamaguchi T., Hayashi K., Kumano D., Crassous J., Vanthuyne N., Roussel C., Yashima E., Polym. Chem., 2014, 5(17), 4909—4914 |
| [3] |
Hirao T., Kishino S., Haino T., Chem. Commun., 2023, 59(17), 2421—2424 |
| [4] |
Yashima E., Ousaka N., Taura D., Shimomura K., Ikai T., Maeda K., Chem. Rev., 2016, 116(22), 13752—13990 |
| [5] |
Nakano K., J. Chromatography A, 2001, 906(1/2), 205—225 |
| [6] |
Hirose D., Isobe A., Quiñoá E., Freire F., Maeda K., J. Am. Chem. Soc., 2019, 141(21), 8592—8598 |
| [7] |
Shimomura K., Ikai T., Kanoh S., Yashima E., Maeda K., Nat. Chem., 2014, 6(2), 429—434 |
| [8] |
Ando M., Ishidate R., Ikai T., Maeda K., Yashima E., J. Polym. Sci. Part A: Polym. Chem., 2019, 57(24), 2481—2490 |
| [9] |
Ikai T., Ando M., Ito M., Ishidate R., Suzuki N., Maeda K., Yashima E., J. Am. Chem. Soc., 2021, 143(32), 12725—12735 |
| [10] |
Wang S., Hu D., Guan X., Cai S., Shi G., Shuai Z., Zhang J., Peng Q., Wan X., Angew. Chem. Inter. Ed., 2021, 60(42), 21918—21926 |
| [11] |
Zhang G., Bao Y., Pan M., Wang N., Cheng X., Zhang W., Sci. China Chem., 2023, 66(4), 1169—1178 |
| [12] |
Bao B., Zhang G., Wang N., Pan M., Zhang W., J. Mater. Chem. C, 2023, 11(7), 2475—2479 |
| [13] |
Ikai T., Mizumoto K., Ishidate R., Kitzmann W. R., Ikeda R., Yokota C., Maeda K., Yashima E., Giant, 2020, 2, 100016 |
| [14] |
Rey⁃Tarrío F., Rodríguez R., Quiñoá E., Riguera R., Freire F., Angew. Chem. Inter. Ed., 2021, 60(15), 8095—8103 |
| [15] |
Sona S., Hirose D., Kurihara Y., Maeda K., J. Mater. Chem. C, 2023, 11(4), 1271—1277 |
| [16] |
Green M. M., Andreola C., Munoz C., Reidy M. C., Zero K., J. Am. Chem. Soc., 1988, 110(14), 4063—4065 |
| [17] |
Abdul Rahim N. A., Fujiki M., Polym. Chem., 2016, 7(28), 4618—4629 |
| [18] |
Leiras S., Freire F., Seco J. M., Quiñoá E., Riguera R., Chem. Sci., 2013, 4(7), 2735—2743 |
| [19] |
Ikai T., Morita Y., Majima T., Takeda S., Ishidate R., Oki K., Suzuki N., Ohtani H., Aoi H., Maeda K., Okoshi K., Yashima E., J. Am. Chem. Soc., 2023, 145(45), 24862—24876 |
| [20] |
Ishidate R., Markvoort A. J., Maeda K., Yashima E., J. Am. Chem. Soc., 2019, 141(18), 7605—7614 |
| [21] |
Alzubi M., Arias S., Rodríguez R., Quiñoá E., Riguera R., Freire F., Angew. Chem., 2019, 131(52), 13499—13503 |
| [22] |
Ciardelli F., Lanzillo S., Pieroni O., Macromolecules, 1974, 7(2), 174—179 |
| [23] |
Aoki T., Kaneko T., Teraguchi M., Polymer, 2006, 47(14), 4867—4892 |
| [24] |
Liu J., Lam J. W. Y., Tang B. Z., Chem. Rev., 2009, 109(11), 5799—5867 |
| [25] |
Masuda T., J. Polym. Sci. Part A: Polym. Chem., 2007, 45(2), 165—180 |
| [26] |
Yuan W. Z., Qin A., Lam J. W. Y., Sun J. Z., Dong Y., Häussler M., Liu J., Xu H. P., Zheng Q., Tang B. Z., Macromolecules, 2007, 40(9), 3159—3166 |
| [27] |
Jim C. K. W., Lam J. W. Y., Leung C. W. T., Qin A., Mahtab F., Tang B. Z., Macromolecules, 2011, 44(8), 2427—2437 |
| [28] |
Feng H. T., Liu C., Li Q., Zhang H., Lam J. W. Y., Tang B. Z., ACS Mater. Lett., 2019, 1(1), 192—202 |
| [29] |
Tarrío J. J., Rodríguez R., Crassous J., Quiñoá E., Freire F., Angew. Chem. Inter. Ed., 2023, 62(32), e202307059 |
| [30] |
Goto H., Okamoto Y., Yashima E., Macromolecules, 2002, 35(12), 4590—4601 |
| [31] |
Wang X., Sun J. Z, Tang B. Z., Prog. Polym. Sci., 2018, 79(1), 98—120 |
| [32] |
Wang S., Hu D., Guan X., Cai S., Shi G., Shuai Z., Zhang J., Peng Q., Wan X., Angew. Chem. Inter. Ed., 2021, 60(48), 21918—21926 |
| [33] |
Zhao B., Gao X., Lu N, Deng J., Adv. Opt. Mater., 2020, 8(19), 2000858 |
| [34] |
Ji Y., Yang K., Zhao B., Pan K., Deng J., ACS Macro Lett., 2024, 13(6), 673—680 |
| [35] |
Yang K., Gao X., Wang X., Zhao B., Wu Y., Deng J., Next Materi., 2025, 8, 100558 |
| [36] |
Zhang X. A, Qin A., Tong L., Zhao H., Zhao Q., Sun J. Z., Tang B. Z., ACS Macro Lett., 2012, 1(1), 75—79 |
| [37] |
Wang X, Hu H., Wang H., Qin A., Sun J. Z., Tang B. Z., Polym. Chem., 2015, 6(43), 7958—7963 |
| [38] |
Pauly A. C., Theato P., Polym. Chem., 2012, 3(7), 1769—1782 |
| [39] |
Das A., Theato P., Chem. Rev., 2016, 116(3), 1434—1495 |
| [40] |
Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E., Software X, 2015, 1/2(1), 19—25 |
| [41] |
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams⁃Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A., Jr Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16, Revision A.01, Gaussian Inc., Wallingford CT, 2016 |
| [42] |
Sirohiwal A., Neese F., Pantazis D. A., J. Am. Chem. Soc., 2020, 142(42), 18174—18190 |
| [43] |
Lu T., Chen F., J. Comput. Chem., 2012, 33(5), 580—592 |
| [44] |
Lu T., Sobtop, Version [1.0(dev3.2)], http://sobereva.com/ soft/Sobtop(accessed on 2024-05-24) |
| [45] |
Humphrey W., Dalke A., Schulten K., J. Molecular Graph., 1996, 14(1), 33—38 |
| [46] |
Mei J., Leung N. L. C., Kwok R.T. K., Lam J.W.Y., Tang B. Z., Chem. Rev. 2015, 115(21), 11718—11940 |
| [47] |
Wang X, Wang W. J., Wang Y. M., Sun J. Z., Tang B. Z., Polym. Chem., 2017, 8(15), 7958—7963 |
| [48] |
Yang F. L., Zhang J., Sun J. Z., Tang B. Z., Acta Pol. Sin., 2021, 52(8), 911—919 |
| [49] |
杨富麟, 张洁, 孙景志, 唐本忠. 高分子学报, 2021, 52(8), 911—919 |
| [50] |
Li Z. H., Liu Y. N., Sun J., Supramol. Mater., 2024, 3, 100065 |
| [51] |
Yang R. Q., Ma J., Fan Y. B., Li Y. R., Chen D. Y., Supramol. Mater., 2023, 2, 100046 |
国家自然科学基金(22071215)
/
| 〈 |
|
〉 |