一步法制备金/介孔二氧化硅复合粒子
One-step Preparation of Au/Mesoporous Silica Composite Particles
以胆碱作为催化剂和还原剂, 催化正硅酸四乙酯(TEOS)的水解/缩合反应并还原四氯金酸(HAuCl4), 经一步协同反应过程制备了金/介孔二氧化硅复合粒子. 通过透射电子显微镜和氮气吸附-脱附表征发现, 加入胆碱后随着预处理时间由4 min分别延迟到8和15 min, 复合粒子的二氧化硅壳层厚度由30 nm递减到20和 8 nm; 而随着反应介质中十六烷基三甲基溴化铵(CTAB)的浓度从2.0 mmol/L升高至8.0 mmol/L, 二氧化硅的介孔孔径由2.0 nm增大至2.8 nm. 实验中还发现, 随着反应介质中水与乙醇的体积比由15∶1降低至13∶3, 制得的复合粒子中金核数量增多, 从单核包覆转变为多核包覆, 且催化性能评价结果显示多核包覆的复合粒子具有更高的催化活性.
In this work, choline was employed as both a catalyst and a reducing agent to catalyze the hydrolysis/ condensation of tetraethyl orthosilicate and reduce chloroauric acid tetrahydrate. Through a one-step concerted reaction process, successfully prepared Au/mesoporous silica composite particles. Transmission electron microscopy(TEM) and nitrogen desorption characterization revealed that thickness of the mesoporous shell increased from 30 nm to 20 and 8 nm when the pre-treatment time after the addition of choline was delayed from 4 min to 8 and 15 min, respectively. Additionally, when the concentration of cetyltrimethylammonium bromide in the reaction medium increased from 2.0 mmol/L to 8.0 mmol/L, mesoporous pore diameter of the silica shell increased from 2.0 nm to 2.8 nm. Finally, as the volume ratio of water to ethanol decreased from 15∶1 to 13∶3, number of the Au particles encapsulated within the mesoporous silica shells could be further adjusted, transitioning from single-core to multi-core encapsulation, and the catalytic results showed that the multi-core encapsulated Au/mesoporous silica composite particles exhibited higher catalytic activity.
Mesoporous silica / Au particles / Composite particles / Catalytic performance
| [1] |
Zhang Z. J., Wang L. M., Wang J., Jiang X. M., Li X. H., Hu Z. J., Ji Y. L., Wu X. C., Chen C. Y., Adv. Mater., 2012, 24 (11), 1418—1423 |
| [2] |
Koosha F., Farsangi Z. J., Samadian H., Amini S. M., J. Porous Mat., 2021, 28(6), 1961—1968 |
| [3] |
Park S. M., Kim D. Y., Lee K. H., Shin Y. I., Han S. C., Kwon S. M., Int. J. Nanomed., 2024, 19, 26758—2690 |
| [4] |
Pak J., Yoo H., Micropor. Mesopor. Mater., 2014, 185, 107—112 |
| [5] |
Peng Y. S., Leng W. G., Dong B., Ge R. L., Duan H. D., Gao Y. A., Chin. J. Catal., 2015, 36(7), 1117—1123 |
| [6] |
Meng C. C., Huang M., Li Y. C., Chem. Res. Chinese Universities, 2023, 39(4), 697―704 |
| [7] |
Ma Y. Z., Nagy G., Siebenbürger M., Kaur R., Dooley K. M., Bharti B., J. Phys. Chem. C, 2022, 126(5), 2531—2541 |
| [8] |
Kankala R. K., Zhang H. B., Liu C. G., Kanubaddi K. R., Lee C. H., Wang S. B., Cui W. G., Santos H. A., Lin K. L., Chen A. Z., Adv. Funct. Mater., 2019, 29(43), 1902652 |
| [9] |
Lu Q., Cui F. M., Dong C. Q., Hua Z. L., Shi J. L., Opt. Mater., 2011, 33(8), 1266—1271 |
| [10] |
Kumari S., Ankush, Kaur A., Rohilla R., Prabhakar N., Talanta, 2026, 298, 128964 |
| [11] |
Xu G. J., Liu S. J., Peng J. X., Lv W. P., Wu R. A., ACS Appl. Mater. Interfaces, 2015, 7(3), 2032—2038 |
| [12] |
Cheng S., Wei Y., Feng Q. W., Qiu K. Y., Pang J. B., Jansen S. A., Yin R., Ong K., Chem. Mater., 2003, 15(7), 1560—1566 |
| [13] |
Chen Y., Chen H. R., Guo L. M., He Q. J., Chen F., Zhou J., Feng J. W., Shi J. L., ACS Nano, 2010, 4(1), 529—539 |
| [14] |
Jan J. S., Chuang T. H., Chen P. J., Teng H. S., Langmuir, 2011, 27(6), 2834—2843 |
| [15] |
Du X., Yao L., He J. H., Chem. Eur. J., 2012, 18(25), 7878—7885 |
| [16] |
Veneziano R., Derrien G., Tan S., Brisson A., Devoisselle J. M., Chopineau J., Charnay C., Small, 2012, 8(23), 3674—3682 |
| [17] |
Chen J. C., Zhang R. Y., Han L., Tu B., Zhao D. Y., Nano Res., 2013, 6(12), 871—879 |
| [18] |
Bartosewicz B., Bujno K., Liszewska M., Budner B., Bazarnik P., Płociński T., Jankiewicz B. J., Colloids Surface A, 2018, 549, 25—33 |
| [19] |
Ji X. H., Song X. N., Li J., Bai Y. B., Yang W. S., Peng X. G., J. Am. Chem. Soc., 2007, 129(45), 13939—13948 |
| [20] |
Ji X. H., Yang W. S., Chem. Sci., 2014, 5(1), 311—323 |
| [21] |
Han Y. D., Lu Z. Y., Teng Z. G., Liang J. L., Guo Z. L., Wang D. Y., Han M. Y., Yang W. S., Langmuir, 2017, 33(23), 5879—5890 |
| [22] |
Wei L. L., Fan Y. Q., Lin H. F., Che S. N., Chem. Res. Chinese Universities, 2024, 40(6), 1220—1226 |
| [23] |
Wong Y. J., Zhu L. F., Teo W. S., Tan Y. W., Yang Y. H., Wang C., Chen H. Y., J. Am. Chem. Soc., 2011, 133(30), 11422—11425 |
| [24] |
Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Nature, 1992, 359, 710—712 |
| [25] |
Han Y. D., Yang W. S., Langmuir, 2024, 40(4), 2352—2361 |
| [26] |
Hu C., Fu W. H., Yuan Z. Q., Liu C., Wang Z. D., Yang W. M., Chem. Res. Chinese Universities, 2025, 41(1), 113―120 |
| [27] |
Grueso E., Perez⁃Tejeda P., Giráldez⁃Pérez R. M., Prado⁃Gotor R., Muriel⁃Delgado F., J. Colloid Interface. Sci., 2018, 529, 65—76 |
/
| 〈 |
|
〉 |