导电聚醚醚酮/聚苯胺薄膜的制备
赵旭 , 林子瑜 , 赵哲 , 任强 , 丁思文 , 赵建盛 , 申璐 , 庞金辉 , 姜振华
高等学校化学学报 ›› 2026, Vol. 47 ›› Issue (01) : 230 -238.
导电聚醚醚酮/聚苯胺薄膜的制备
Preparation of Conductive Polyetheretherketone/Polyaniline Films
为解决常规熔融共混法制备聚醚醚酮(PEEK)/聚苯胺(PANI)复合材料过程中存在的PANI易团聚和高温分解的问题, 采用聚合物前驱体膜一步原位合成法, 制备出高含量且分布均匀的PEEK/PANI复合薄膜. 通过考察前驱体聚合物的共聚组成对最终PANI含量及薄膜性能的影响, 调控关键单体N-苯基(4,4′-二氟二苯)酮胺(PDK)与4,4′-二氟二苯甲酮的摩尔比, 制备了一系列聚芳醚亚胺(PAEN)共聚物薄膜作为前驱体膜, 并对其经侧基水解协同氧化偶联反应得到的PEEK/PANI复合薄膜进行了表征. 结果表明, 当PDK与4,4′-二氟二苯甲酮的摩尔比为9∶1时, 所得PEEK/PANI-0.9薄膜表现出最佳综合性能. 扫描电子显微镜(SEM)观察显示, PEEK/PANI薄膜表面致密均匀、 无明显孔洞. 电学测试结果表明, 厚度为40 μm的PEEK/PANI-0.9薄膜的电导率较高, 为4.78×10⁻⁴ S/m. 所制备的PANI含量高、 分散均匀的聚醚醚酮导电复合薄膜有望在导电、 抗静电、 电磁屏蔽及吸波领域得到广泛应用.
To address the issues of polyaniline(PANI) aggregation and thermal degradation in conventional melt-blended polyetheretherketone(PEEK)/PANI composites, we developed a one-step in-situ synthesis method starting from copolymer precursor films. A series of precursor films based on PAEN copolymer was prepared by varying the molar ratio of the key monomers, N-phenyl(4,4′-difluorodiphenyl) ketone-amine(PDK) and 4,4′-difluorodiphenyl ketone. These precursors were subsequently converted into PEEK/PANI composite films through side-chain hydrolysis and oxidative coupling. The results showed that the composite film with a 9/1 monomer ratio(denoted as PEEK/PANI-0.9) exhibited the best overall performance. Scanning electron microscopy(SEM) characterization revealed a dense and uniform surface morphology without obvious pores. Electrically, a 40 μm-thick PEEK/PANI-0.9 film achieved a conductivity of 4.78×10-⁴ S/m. In summary, this method successfully produces PEEK films with well-dispersed, high content PANI, showing promise for applications in areas requiring conductivity, antistatic protection, electromagnetic shielding and wave absorption.
One-step in-situ synthesis method / Conductive material / Polyetheretherketone / Polyaniline
| [1] |
Wu H., Yu G., Pan L., Liu N., McDowell M. T., Bao Z., Cui Y., Nat. Commun., 2013, 4, 1943 |
| [2] |
Santoro M., Gorelli F. A., Bini R., Haines J., van der Lee A., Nat. Commun., 2013, 4, 1557 |
| [3] |
Wang Y., Zanelotti C. J., Wang X., Kerr R., Jin L., Kan W. H., Dingemans T. J., Forsyth M., Madsen L. A., Nat. Mater., 2021, 20(9), 1255—1263 |
| [4] |
Orava J., Balachandran S., Han X., Shuleshova O., Nurouzi E., Soldatov I., Oswald S., Gutowski O., Ivashko O., Dippel A. C., Zimmermann M. V., Ivanov Y. P., Greer A. L., Raabe D., Herbig M., Kaban I., Nat. Commun., 2021, 12(1), 2839 |
| [5] |
Chung H. T., Won J. H., Zelenay P., Nat. Commun., 2013, 4, 1922 |
| [6] |
Lin Z., Cao N., Sun Z., Li W., Sun Y., Zhang H., Pang J., Jiang Z., Adv. Sci., 2022, 9(1), e2103706 |
| [7] |
Chen M. X., Wang X. Y., Zhang W., Xiao C. F., Chem. Ind. Eng. Prog., 2023, 42(5), 2439—2453 |
| [8] |
陈明星, 王新亚, 张威, 肖长发. 化工进展, 2023, 42(5), 2439—2453 |
| [9] |
Ding S. J., Zhao Y. Z., Ge D. B., Mater. Rep., 2008, 22(4), 30—37 |
| [10] |
丁世敬, 赵跃智, 葛德彪. 材料导报, 2008, 22(4), 30—37 |
| [11] |
Chen S. J., Acta Aeronaut. Astronaut. Sin., 2008, 29(3), 605—610 |
| [12] |
陈绍杰. 航空学报, 2008, 29(3), 605—610 |
| [13] |
Lin N., Lin Z. R., Chen H. N., Lu L. S., J. Mech. Eng., 2022, 58(3), 235—250 |
| [14] |
蔺娜, 林志燃, 陈瀚宁, 陆龙生. 机械工程学报, 2022, 58(3), 235—250 |
| [15] |
Peng X. D., Wang Y. M., Huang X., Li K., Hydraul. Pneum. Seals, 2009, 29(4), 4—11 |
| [16] |
彭旭东, 王玉明, 黄兴, 李鲲. 液压气动与密封, 2009, 29(4), 4—11 |
| [17] |
Qin Y., Yi J. N., Wu Y. Q., Wu Q. L., Zhang Z., Li L., Sci. Silvae. Sin., 2018, 54(3), 134—143 |
| [18] |
卿彦, 易佳楠, 吴义强, 吴清林, 张振, 李蕾. 林业科学, 2018, 54(3), 134—143 |
| [19] |
Hou L. L., Zhang M. L., Lang F. X., Zheng X. Y., Liu L. M., Chem. Ind. Eng. Prog., 2024, 43(10), 5837—5856 |
| [20] |
候林丽, 张梦玲, 郎锋样, 郑希怡, 刘利民. 化工进展, 2024, 43(10), 5837—5856 |
| [21] |
Zhao Y. F., Mater. China, 2013, 32(4), 217—242 |
| [22] |
赵云峰. 中国材料进展, 2013, 32(4), 217—242 |
| [23] |
Liu L., Zhang D., J. Funct. Mater., 2015, 46(3), 3016—3022 |
| [24] |
刘琳, 张东. 功能材料, 2015, 46(3), 3016—3022 |
| [25] |
Song Y. X., Wei Y., Zheng Y. S., Xu C. R., N. Chem. Mater., 2000, 28(9), 3—7 |
| [26] |
宋月贤, 韦玮, 郑元锁, 徐传镶. 化工新型材料, 2000, 28(9), 3—7 |
| [27] |
Zhao X., Qiu P. D., Jiang H. J., Jin Z. X., Cai K. D., Electron. Compon. Mater., 2015, 34(1), 1—8 |
| [28] |
赵雪, 邱平达, 姜海静, 金振兴, 蔡克迪. 电子元件与材料, 2015, 34(1), 1—8 |
| [29] |
Zhang X. M., Yang K., Jiao M. L., Diao Q., Zhu G. X., Jia W. S., Cao J., Shanghai Text. Sci. Technol., 2020, 48(8), 17—21 |
| [30] |
张啸梅, 杨凯, 焦明立, 刁泉, 朱根兴, 贾万顺, 曹健. 上海纺织科技, 2020, 48(8), 17—21 |
| [31] |
Karami H., Mousavi M. F., Shamsipur M., J. Power Sources, 2003, 117(1/2), 255—259 |
| [32] |
Wang G., Morrin A., Li M., Liu N., Luo X., J. Mater. Chem. B, 2018, 6(25), 4173—4190 |
| [33] |
Yang Y., Qiang J. F., Jing X. L., Yao S., N. Chem. Mater., 2003, 31(3), 1—6 |
| [34] |
杨勇, 强军锋, 井新利, 姚胜. 化工新型材料, 2003, 31(3), 1—6 |
| [35] |
Mao C. Y., Zhao S., He P. P., Wang Z., Wang J. X., Chem. Eng. J., 2021, 414, 128929 |
| [36] |
Amura I. F., Shahid S., Sarihan A., Shen J., Patterson D. A., Emanuelsson E. A. C., J. Membr. Sci., 2021, 620, 117712 |
| [37] |
Rayar A., Prasanna G. D., Shreedhara K. M., Dobbidi P., Rekha Phani P. S. D., Naveen C. S., Synth. Metals, 2026, 317, 118023 |
| [38] |
Mohajer S., Dorraj M. S. S., Rasoulifard M. H., Hajimiri I., ACS Appl. Polym. Mater., 2025, 7, 15394—15407 |
| [39] |
Zhou L., Meng Z. T., Sun B., Xue C. F., Xu B. F., Gu L. L., N. Chem. Mater., 2025, 53(Suppl. 1), 63—75 |
| [40] |
周文, 孟照婷, 孙彬, 薛超凡, 许宝方, 顾璐璐. 化工新型材料, 2025, 53(Suppl. 1), 63—75 |
| [41] |
Xu Z. H., Yi H., Fang T., Liu J. S., Wang Y. S., Tan X. M., Gui T. J., J. Qingdao Univ. Technol., 2025, 46(4), 109—116 |
| [42] |
徐振华, 尹红, 方涛, 刘杰胜, 王源升, 谭晓明, 桂泰江. 青岛理工大学学报, 2025, 46(4), 109—116 |
| [43] |
Zhang K. J., Tech. Text., 2025, 43(7), 39—46 |
| [44] |
张坤杰. 产业用纺织品, 2025, 43(7), 39—46 |
| [45] |
Cao N., Yue C., Lin Z., Li W., Zhang H., Pang J., Jiang Z., J. Hazard. Mater., 2021, 414, 125489 |
吉林省自然科学基金(20250102059JC)
/
| 〈 |
|
〉 |