基于三维枝状TiO2纳米阵列的三相酶催化反应界面及高效光电化学传感
王丹丹 , 陈礼平 , 封心建
高等学校化学学报 ›› 2026, Vol. 47 ›› Issue (01) : 189 -197.
基于三维枝状TiO2纳米阵列的三相酶催化反应界面及高效光电化学传感
Three-phase Enzymatic Reaction Interface Based on 3D Branched TiO2 Nanoarrays for High Performance Photoelectrochemical Sensing
针对传统光电化学酶生物传感器溶解氧受限的核心问题, 提出了一种基于三维枝状纳米阵列结构的“固-液-气三相反应界面”的构建策略, 共通过两步水热法在氟掺杂氧化锡导电玻璃上制备了具有三维枝状结构的TiO2纳米阵列, 再经过选择性疏水和亲水化处理与氧化酶修饰, 构筑了稳定的三相界面. 此设计实现了氧气可直接通过气相传输至催化位点, 有效解决了传统固-液两相界面氧气供应不足的瓶颈问题. 结果表明, 该传感器的线性检测范围相较于传统结构提升了20倍, 并表现出优异的稳定性(相对标准偏差<2%). 本文研究结果为开发高灵敏度、 高稳定性的光电化学传感器提供了新的构筑策略, 有望在慢性疾病的早期诊断中发挥重要作用.
This study addressed the critical challenge of the limited dissolved oxygen in traditional photoelectrochemical enzyme biosensors by proposing a construction strategy for a “solid-liquid-gas three-phase enzymatic reaction interface”, utilizing a three-dimensional(3D) dendritic nanostructure. The methodology involved the preparation of titanium dioxide(TiO2) nanowire arrays featuring a 3D dendritic structure on fluorine-doped tin oxide conductive glass through a two-step hydrothermal process. Following selective hydrophobic and hydrophilic treatments, along with enzyme modification, a stable three-phase interface was successfully established. This innovative design facilitates the direct transport of oxygen to the catalytic sites via the gas phase, effectively addressing the limitations associated with insufficient oxygen supply at the conventional solid-liquid two-phase interface. Experimental results demonstrate that the linear detection range of this sensor has been enhanced by a factor of 20 compared to traditional structures, while exhibiting excellent stability(relative standard deviation<2%). This research introduces a novel construction strategy for the development of highly sensitive and stable photoelectrochemical sensors, which may significantly contribute to the early diagnosis of chronic diseases.
光电化学生物传感器 / 三维枝状二氧化钛纳米阵列 / 三相界面 / 氧化酶
Photoelectrochemical biosensor / 3D branched TiO2 nanoarrays / Three-phase interface / Oxidase
支持信息见 http: //www.cjcu.jlu.edu.cn/CN/10.7503/20250330.
| [1] |
Jia Y., Chen S., Wang Q., Li J., Nanoscale, 2024, 16(6), 2834—2846 |
| [2] |
Xu X., Zhang H., Li C. H., Guo X. M., Microchem. J., 2022, 175, 107198 |
| [3] |
Mruga D., Berketa K., Dzyadevych S., Soldatkin O., Trac⁃trend. Anal. Chem., 2025, 193, 118471 |
| [4] |
Ding Z., Wang D., Chen L., Yu H., Zhou H., Zhou Y., Feng X., Jiang L., Adv. Funct. Mater., 2023, 33(4), 2210674 |
| [5] |
Zhou K. T. Y., James S., Gaca M., Lecamwasam A., Dervisevic M., O'Neal D., Voelcker N. H., Ekinci E. I., Diabetes Technol. Ther., 2024, 26(12), 885—896 |
| [6] |
Liu H., Sun X., Dai Y., Zhang X., Xia F., Chem. Res. Chinese Universities, 2024, 40(2), 326—332 |
| [7] |
Arora P., Zheng H. Y., Munusamy S., Jahani R., Guan X. Y., Electrophoresis, 2024, 45(21/22), 2034—2044 |
| [8] |
Shrikrishna N. S., Gandhi S., J. Nanobiotechnology, 2025, 23(1), 663 |
| [9] |
Zheng D. L., Zhang R. L., Chem. J. Chinese Universities, 2024, 45(8), 20240183 |
| [10] |
郑德论, 张锐龙.高等学校化学学报, 2024, 45(8), 20240183 |
| [11] |
Li Z., Meng X., Fang C., Yi Z., Wu Y., Liu X., Zhong W., Zhang L., Xie Z., Chem. Res. Chinese Universities, 2024, 40(5), 874—880 |
| [12] |
Wang L. Y., Wei Y. P., Chen J. S., Zhu H., Liu X. P., Mao C. J., Jin B. K., Sens. Actuators B: Chem., 2026, 447, 138810 |
| [13] |
Dashtian K., Zahedpour F., Foroozandeh A., Abdouss M., Hajati S., Golzani M., Trac⁃trend. Anal. Chem., 2025, 193, 118471 |
| [14] |
Deng H. M., Yang N., Xu J., Geng X. C., Yuan Y. L., Yuan R., Chai Y. Q., Chem. Eng. J., 2025, 522(15), 167103 |
| [15] |
Li Q., Fu S., Wang X., Wang L., Liu X., Gao Y., Li Q., Wang W., ACS Appl. Mater. Interfaces, 2022, 14(51), 57471—57480 |
| [16] |
Zhao W. W., Xu J. J., Chen H. Y., Biosens. Bioelectron., 2017, 92, 294—304 |
| [17] |
Tang J., Wang Y., Li J., Da P., Geng J., Zheng G., J. Mater. Chem. A, 2014, 2(17), 6153—6157 |
| [18] |
Zhang L., Ruan Y. F., Liang Y. Y., Zhao W. W., Yu X. D., Xu J. J., Chen H. Y., ACS Appl. Mater. Interfaces, 2018, 10(4), 3372—3379 |
| [19] |
Si Z. Z., Shao R., Li T., Yang M. H., Microchim. Acta, 2025, 192(9), 568 |
| [20] |
Wilson G. S., Hu Y., Chem. Rev., 2000, 100(7), 2693—2704 |
| [21] |
Rahman M. M., Ahammad A. J. S., Jin J. H., Ahn S. J., Lee J. J., Sensors, 2010, 10(5), 4855—4886 |
| [22] |
Cussler E., Diffusion: Mass Transfer in Fluid Systems, 2nd Ed., Cambridge University Press, Cambridge, UK, 1997 |
| [23] |
Nie C., Ma T., Chen T., Chu X., Chem. Res. Chinese Universities, 2024, 40(2), 333—342 |
| [24] |
He L., Luo Y., Zhang Y., Yan T., Liu J., Chem. Res. Chinese Universities, 2025, 41(1), 95—100 |
| [25] |
Wen Z. X., Xin W. W., Xu Q., Chen W. P., Zhou T., Fang R. C., Kong X. Y., Jiang L., Chem. J. Chinese Universities, 2023, 44(10), 20230116 |
| [26] |
闻治瑄, 辛伟闻, 徐倩, 陈伟鹏, 周腾, 房若辰, 孔祥玉, 江雷. 高等学校化学学报, 2023, 44(10), 20230116 |
| [27] |
Feng L., Li S., Li Y., Li H., Zhang L., Zhai J., Song Y., Liu B., Jiang L., Zhu D., Adv. Mater., 2002, 14(24), 1857—1860 |
| [28] |
Guittard F., Amigoni S., Darmanin T., ACS Nano, 2025, 19(41), 36005—36026 |
| [29] |
Shome A., Das A., Borbora A., Dhar M., Manna U., Chem. Soc. Rev., 2022, 51(13), 5452—5497 |
| [30] |
Zhou Y. F., Ding Z. Y., Sun Q. H., Chen L. P., Wang D. D., Bao X. G., Feng X. J., J. Am. Chem. Soc., 2024, 146(24), 16581—16589 |
| [31] |
Huang L., Zeng M., Li Y., Liu Z., Zhang J., Feng X., ACS Sens., 2025, 10(5), 3433—3440 |
| [32] |
Zhou H., Sheng X., Ding Z., Chen X., Zhang X., Feng X., Jiang L., ACS Catal., 2022, 12, 13690—13696 |
| [33] |
Wang D., Ding Z., Zhou H., Chen L., Feng X., ACS Appl. Nano Mater., 2021, 4(9), 9401—9408 |
| [34] |
Wang Z., Chen L., Wang D., Ding Z., Zhang X., Feng X., Jiang L., CCS Chem., 2022, 4(3), 1044—1053 |
| [35] |
Wang D., Chen L., Ding Z., Feng X., Sol. RRL, 2020, 4(8), 1900185 |
| [36] |
Wang D., Ding Z., Cheng H., Chen L., Feng X., Sens. Actuators B, 2023, 392, 134125 |
| [37] |
Wang D., Chen L., Feng X., Droplet, 2023, 2, e51 |
| [38] |
Mao D., Wang C., Li W., Zhou L., Liu J., Zheng Z., Zhao Y., Cao A. M., Wang S., Huang J., Huo F., Chen H., Mai L., Yu R., Wang L., Lu Y., Yu C., Yang Q., Yang Z., Zeng H. C., Zhao H., Tang Z., Zhao D., Wang D., Chem. Res. Chinese Universities, 2024, 40(3), 346—393 |
| [39] |
Sheng X., He D., Yang J., Zhu K., Feng X., Nano Lett., 2014, 14(4), 1848—1852 |
| [40] |
Liu J., Sheng X., Guan F., Li K., Wang D., Chen L., Feng X., Chem. Sci., 2018, 9(37), 7400—7404 |
| [41] |
He L., Liu Q., Zhang S., Zhang X., Gong C., Shu H., Wang G., Liu H., Wen S., Zhang B., Electrochem. Commun., 2018, 94, 18—22 |
| [42] |
Zhang J. Y., Ding Z. Y., Wang D. D., Chen L. P., Feng X. J., Chem. J. Chinese Universities, 2021, 42(10), 3167—3174 |
| [43] |
张嘉懿, 丁臻尧, 王丹丹, 陈礼平, 封心建. 高等学校化学学报, 2021, 42(10), 3167—3174 |
山西省高等学校科技创新项目(2024L452)
山西省基础研究计划资助项目(202403021222360)
国家重点研发计划项目(2019YFA0709200)
/
| 〈 |
|
〉 |