基于低分子量聚合物共混的改性聚双环戊二烯弹性体的制备与性能
Preparation and Properties of Modified Polydicyclopentadiene Elastomers Based on Blending with Low-molecular-weight Polymers
通过双环戊二烯(DCPD)与三环戊二烯(TCPD)共聚, 并与具有良好相容性的低分子量聚丁二烯(PB)进行共混改性, 制备了聚双环戊二烯(PDCPD)弹性体改性材料. DCPD与TCPD共聚可以调节材料刚性; PB的引入降低了体系交联度, 减少了刚性环状结构比例, 同时其增塑作用导致改性PDCPD由刚性热固性塑料向柔性弹性体转变. 当PB添加量为单体混合物质量的35%时, PDCPD弹性体改性材料为拉伸强度为12 MPa、 断裂伸长率为296%的热固性弹性体, 同时其热分解温度未显著降低. 拉伸断面扫描电镜图像、 动态热机械分析及热重分析结果表明, PB在体系中以物理共混形式存在. 尽管过多PB的引入会在一定程度上降低材料的耐水性, 但在60 ℃去离子水中浸泡48 h后, 其最大吸水率低于0.9%. 本文研究结果为低分子量聚合物共混改性PDCPD, 使其转变为弹性体提供了有效途径.
High-performance polydicyclopentadiene(PDCPD) elastomeric materials were prepared by copolymeri-zing dicyclopentadiene(DCPD) with tricyclopentadiene(TCPD) and introducing a low-molecular-weight polybuta- diene(PB) with good compatibility for blending modification. The copolymerization of DCPD and TCPD allowed for the tuning of material rigidity; the introduction of PB decreased the crosslinking density, reduced the proportion of rigid cyclic structures, and provided a plasticizing effect, collectively transforming PDCPD from a rigid thermoset into a flexible elastomer. When the PB content(mass ratio to DCPD/TCPD mixture) reached 35%, the modified PDCPD exhibited a tensile strength of 12 MPa and an elongation at break of 296%, demonstrating a thermoset elastomeric behavior. Scanning electron microscopy of the tensile fracture surface, dynamic mechanical analysis, and thermogravimetric analysis indicated that PB existed in the system as a physically blended phase. Although excessive PB addition slightly deteriorated the water resistance, the maximum water absorption of the material remained below 0.9% after immersion in deionized water at 60 ℃ for 48 h. This study provided an effective approach to transforming PDCPD into an elastomer through blending modification with low-molecular-weight polymers.
Polydicyclopentadiene / Polybutadiene / Elastomer
| [1] |
Hu S. K., He S. Y., Wang Y. M., Wu Y. W., Shou T., Yin D. X., Mu G. Y., Zhao X. Y., Gao Y. Y., Liu J., Li F. Z., Guo M. M., Zhang L. Q., Nano Energ., 2022, 95, 107012 |
| [2] |
Wu Y. X., Zhang S., Zhu H., High⁃performance Elastomeric Materials, Chemical Industry Press, Beijing, 2024, 2—5 |
| [3] |
吴一弦, 张树, 朱寒. 高性能弹性体材料, 北京: 化学工业出版社, 2024, 2—5 |
| [4] |
Li X. F., Zou W. S., Zhao W. S., Sun Y., Tang A. Y., Zhang S. F., Niu W. B., J. Am. Chem. Soc., 2025, 147(5), 4357—4364 |
| [5] |
Sun M., Zhong H. L., Qin K. P., Xu T., Yang W. G., Zhang Y., Lu L., Materials, 2024, 17(22), 5660 |
| [6] |
Robertson I. D., Yourdkhani M., Centellas P. J., Aw J. E., Ivanoff D. G., Goli E., Lloyd E. M., Dean L. M., Sottos N. R., Geubelle P. H., Moore J. S., White S. R., Nature, 2018, 557(7704), 223—227 |
| [7] |
Shieh P., Zhang W. X., Husted K. E. L., Kristufek S. L., Xiong B. Y., Lundberg D. J., Lem J., Veysset D., Sun Y. C., Nelson K. A., Plata D. L., Johnson J. A., Nature, 2020, 583(7817), 542—547 |
| [8] |
Si G. F., Chen C. L., Nat. Synth., 2022, 1, 956—966 |
| [9] |
Centellas P. J., Yourdkhani M., Vyas S., Koohbor B., Geubelle P. H., Sottos N. R., Compos. Part A: Appl. Sci. Manuf., 2022, 158, 106931 |
| [10] |
Cheng C., Zhang C. Y., Chen Z. G., Zhou F., Zhou J. L., Sun Z. Y., Yu M. H., Polym. Compos., 2023, 44(10), 6929—6943 |
| [11] |
Bars B., Cobert A., SAE Int. J. Passen. Car., 2011, 4(1), 32—43 |
| [12] |
Vallons K. A. M., Drozdzak R., Charret M., Lomov S. V., Verpoest I., Compos. Part A: Appl. Sci. Manuf., 2015, 78, 191—200 |
| [13] |
Hu Y. H., Lang A. W., Li X. C., Nutt S. R., Polym. Degrad. Stabil., 2014, 110, 464—472 |
| [14] |
Kovacic S., Slugovc C., Mater. Chem. Front., 2020, 4(8), 2235—2255 |
| [15] |
Li T., Wulff J. E., ACS Appl. Polym. Mater., 2020, 3(1), 110—115 |
| [16] |
Leguizamon S. C., Monk N. T., Hochrein M. T., Zapien E. M., Yoon A., Foster J. C., Appelhans L. N., Macromolecules, 2022, 55(18), 8273—8282 |
| [17] |
Zhao S., LI, J., An M. J., Jin P., Zhang X. M., Luo Y. J., Polym. Adv. Technol., 2022, 34(1), 441—445 |
| [18] |
Dean L. M., Wu Q., Alshangiti O., Moore J. S., Sottos N. R., ACS Macro Lett., 2020, 9(6), 819—824 |
| [19] |
Lv X. X., Ao Q., Jiang L., Li X. G., Tong X. L., Song Y., Tang J., ACS Sustain. Chem. Eng., 2024, 12(5), 2041—2048 |
| [20] |
Beuguel Q., Kirillov E., Carpentier J. F., Guillaume S. M., ACS Appl. Polym. Mater., 2022, 4(4), 2251—2255 |
| [21] |
Zhang T. T., Xu N., Yin W., Liu D. L., Liu C., Lang M. D., Mater. Today Commun., 2024, 40, 109494 |
| [22] |
Park H. C., Kim A., Lee B. Y., J. Polym. Sci., Part A: Polym. Chem., 2011, 49(4), 938—944 |
| [23] |
Park E. S., Park J. H., Jeon J. Y., Sung J. U., Hwang W. S., Lee B. Y., Macromol. Res., 2013, 21(1), 114—117 |
| [24] |
Yu S. T., Na S. J., Lim T. S., Lee B. Y., Macromolecules., 2010, 43(2), 725—730 |
| [25] |
Dai L., Synthesis of Functionalized Polybutadiene Liquid Rubbers and Their Copolymers, Zhejiang University, Hangzhou, 2020 |
| [26] |
戴璐. 功能化聚丁二烯液体橡胶及其嵌段共聚物的合成, 杭州: 浙江大学, 2020 |
| [27] |
Zhu H., Wu Y. X., Guo Q. L., Wu G. Y., J. Beijing Univ. Chem. Technol., 2004, 31(6), 47—51 |
| [28] |
朱寒, 吴一弦, 郭青磊, 武冠英. 北京化工大学学报, 2004, 31(6), 47—51 |
吉林省科技发展计划项目(20240302124GX)
/
| 〈 |
|
〉 |