柔性生物电极材料在脑机接口领域的研究与应用
Research and Applications of Flexible Bioelectrode Materials in the Field of Brain–Computer Interfaces
脑机接口(brain-computer interface, BCI)技术作为连接人脑与外部设备的关键桥梁,近年来在神经科学、康复医学及人机交互等领域取得了显著进展。传统刚性材料(如硅基材料和金属微针)因其与脑组织在机械和几何特性上存在显著失配,易引发组织损伤、免疫排斥和信号质量衰减等问题。相比之下,柔性生物电极材料凭借其优异的机械相容性、生物稳定性及可靠的电信号采集性能,逐渐发展成为BCI核心硬件的重要研究方向。本综述系统总结了柔性生物材料在脑机接口中的应用现状,重点探讨了其在长期植入安全性、信号稳定性等方面的优势,并剖析了当前面临的挑战与未来发展趋势。综合分析表明,柔性生物电极在定制化设计、多功能集成与安全稳定监测等方面展现出巨大潜力。因此,未来研究应致力于开发新型功能化柔性材料、优化器件集成与封装工艺,以推动脑机接口技术的临床转化与实用化进程。
Brain‐Computer Interface (BCI) technology, serving as a critical link between the human brain and external devices, has made remarkable progress in recent years across various fields, including neuroscience, rehabilitation medicine, and human‐machine interaction. Traditional rigid materials (e.g., silicon-based substrates and metallic microneedles) often exhibit marked mechanical and geometric mismatches with brain tissue, resulting in complications such as tissue damage, immune rejection, and signal degradation. In contrast, flexible bioelectrode materials, characterized by superior mechanical compliance, biostability, and reliable electrophysiological recording capabilities, have emerged as a focal point in teh research and development of BCI hardware. This study systematically reviews the current state of flexible biomaterials used in BCIs, highlighting their advantages in long-term implantation safety and signal stability, while also addressing the challenges and future directions in this field. A comprehensive assessment reveals that flexible bioelectrodes show considerable potential for customized design, multifunctional integration, and secure, stable monitoring. Accordingly, future research should focus on the development of novel functionalized flexible materials and the optimization of device integration and packaging strategies to faciliate the clinical translation and practical application of BCI technologies.
brain-computer interface / flexible biomaterials / hydrogel / electrospinning
| [1] |
|
| [2] |
|
| [3] |
王麒深,时昌润,吴晋, |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
吴何必,陈树耿,贾杰.脑机接口技术在脑卒中患者上肢运动功能康复领域的脑机制研究进展[J].生物医学工程学杂志,2025,42(3):480-487. |
| [9] |
肖硕勤,贾贵军.脑机接口联合电刺激用于脊髓损伤后康复治疗的研究进展[J].国际神经病学神经外科学杂志,2025,52(3):66-72. |
| [10] |
丁佳程.侵入式脑机接口关键模块设计[D].成都:电子科技大学,2025. |
| [11] |
王子韬.便携式脑机接口系统的研究与设计[D]. 南昌: 南昌大学,2024. |
| [12] |
赵兴平.基于单通道脑机接口的智能轮椅控制及人机交互研究[D].哈尔滨:哈尔滨工业大学,2017. |
| [13] |
王雪,李莎,李荣洋, |
| [14] |
曹洪涛,钟子平,陈远方, |
| [15] |
赵均榜.稳态视觉诱发电位的注意机制及其在脑机接口的应用[D].杭州:浙江大学,2012. |
| [16] |
陈小刚,陈菁菁,刘冰川, |
| [17] |
王佳威.脑电波信号的处理方法与应用[D].北京:北京邮电大学,2015. |
| [18] |
韩雨,韩丛英.2021年人工智能领域科技发展综述[J].战术导弹技术,2022(2):42-51. |
| [19] |
|
| [20] |
|
| [21] |
YUK H, |
| [22] |
|
| [23] |
陈小刚,陈菁菁,刘冰川, |
| [24] |
蒋勤,张毅,谢志荣.脑机接口在康复医疗领域的应用研究综述[J].重庆邮电大学学报(自然科学版),2021,33(4):562-570. |
| [25] |
梁全铎.柔性超分子水凝胶电极的制备及其在脑信号监测中的应用[D].合肥:中国科学技术大学,2023. |
| [26] |
贺庆,郝思聪,司娟宁, |
| [27] |
杨海波.《认知神经科学与人机交互的融合: 人机交互研究的新趋势》序言[J].包装工程,2019,40(22):2. |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
康晓洋.面向瘫痪康复的氧化铱柔性可植入MEMS神经接口器件研究[D].上海:上海交通大学,2016. |
| [32] |
雷煜.脑机接口技术及其应用研究进展[J].中国药理学与毒理学杂志,2017,31(11):1068-1074. |
| [33] |
李瑞凯.无线高通量脑电信号采集关键技术及其在脑-机接口中的应用研究[D].保定:河北大学,2023. |
| [34] |
梁珊.基于压电效应的无电池脑机接口及其生物物理调控研究[D].成都:电子科技大学,2025. |
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
崔正哲. 脑机接口脊髓损伤康复机器人系统研究及临床应用[D]. 杭州: 浙江大学, 2022. |
| [39] |
董瑞华. 液态金属柔性神经电极的制备与应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
| [40] |
|
| [41] |
王鹏. 脑机接口中植入式无线遥控遥测技术的研究[D]. 杭州: 浙江大学, 2012. |
| [42] |
|
| [43] |
|
| [44] |
郑宇航. 金-石墨烯干电极的制备及在脑机接口中的应用[D]. 天津: 天津理工大学, 2024. |
| [45] |
|
| [46] |
|
| [47] |
王磊.基于运动想象的脑电信号分类与脑机接口技术研究[D].天津:河北工业大学,2009. |
| [48] |
潘熙然,张志,雷霆.共轭高分子在脑机接口中的应用与展望[J]. 高分子学报,2025,56(3):377-395. |
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
国家自然科学基金资助项目(52303189)
国家自然科学基金资助项目(U22A20144)
宁夏自然科学基金优秀青年项目(2023AAC05027)
银川市科技支撑重点项目(2024SFZD004)
/
| 〈 |
|
〉 |