基于STM32和MPU9250的高精度姿态检测系统设计
The Design of High-Precision Attitude Detection System Based on STM32 and MPU9250
当前市面上的姿态检测传感器普遍存在性能与实用性失衡的问题:高精度姿态传感器虽测量精准,但价格昂贵、体积偏大,便携性不佳;而常用的经济型姿态传感器则存在测量误差较大的缺陷,难以满足高精度应用场景需求。针对这一现状,设计了一种基于STM32嵌入式处理器与 MPU9250传感器的高精度姿态检测系统。该系统以高性能STM32为控制核心,搭载MPU9250九轴传感器(集成三轴加速度计、三轴陀螺仪、三轴磁力计),通过姿态解算技术、四元数解算欧拉角算法及多源数据融合技术,对传感器采集的原始数据进行噪声抑制与误差补偿处理,有效提升了姿态测量的精度与稳定性。经实际测试验证,该系统可实时捕获物体的运动轨迹与姿态信息,并在上位机图形化显示界面中直观呈现。检测人员通过上位机软件能够清晰掌握物体运动状态的动态变化,系统兼具测量精度高、硬件成本低、体积小巧、便携性强等优势,广泛适用于对姿态检测有高精度要求的各类场景。
Currently, the attitude detection sensors available on the market suffer from a mismatch between performance and practicality. High-precision attitude sensors, while accurate, are often expensive, bulky, and lack portability. Conversely, commonly used economical attitude sensors exhibit significant measurement errors, making them unsuitable for high-precision applications. To address these issues, the design of a high-precision attitude detection system was proposed, based on the STM32 embedded processor and the MPU9250 sensor. This system utilized the high-performance STM32 as its control core, integrating the MPU9250 nine-axis sensor (which included a three-axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer). By employing attitude solution techniques, quaternion algorithms for Euler angle calculation, and multi-source data fusion technology, the raw data collected from the sensors was processed to achieve noise suppression and error compensation. This enhanced both the accuracy and stability of attitude measurements. Through practical testing, the system demonstrated the capacity to capture the motion trajectory and attitude information of objects in real time, which was visually presented in a graphical user interface on a host computer. Users could effectively monitor dynamic changes in object motion states through the software, benefiting from high measurement precision, low hardware cost, compact size, and strong portability. This system is widely applicable in various scenarios requiring high-precision attitude detection.
STM32 / MPU9250传感器 / 四元数 / 姿态解算 / 上位机显示
STM32 / MPU9250 sensor / quaternion / attitude solution / host computer display
| [1] |
汪晓飞,杨晓玲,张杰, |
| [2] |
赵晓皓,盖翔,谢新武, |
| [3] |
李冰,雷泷杰,陈超.基于椭圆拟合的双轴磁传感器标定方法[J].探测与控制学报,2020,42(3):20-23. |
| [4] |
王宇杰.基于MEMS-IMU的手势识别[D].哈尔滨:哈尔滨工业大学,2019. |
| [5] |
王莉,张紫烨,牛群峰, |
| [6] |
彭琰举,宋文学,王晋, |
| [7] |
陈晓,宋晓梅,张意华.可穿戴运动捕捉系统[J].国外电子测量技术,2017,36(10):60-63. |
| [8] |
何松,陈兴武.基于MPU9250的无人机姿态信息采集及处理[J].福建工程学院学报,2016,14(6):587-592. |
| [9] |
张丽娟.四旋翼飞行器姿态角估计与控制[D].西安:西安科技大学,2016. |
| [10] |
卢艳军,吴金宇.基于LabVIEW的四旋翼飞行器姿态测量实验系统[J].实验技术与管理,2018,35(2):142-145. |
| [11] |
张萍.四旋翼飞行器互补滤波姿态求解器的设计[J].机械科学与技术,2020,39(9):1471-1476. |
| [12] |
吴海洲.基于ⅡC总线的串行数据通信[J].数字技术与应用,2016,34(11):18. |
| [13] |
刘哲,李冬,丁承君, |
| [14] |
刘明亮,崔宇佳,张一迪, |
| [15] |
张俊杰,孙光民,李煜, |
| [16] |
王新雷.基于人体动作节点识别系统设计[J].信息技术与信息化,2021(8):84-86. |
| [17] |
王谦,李新洪,贺广松, |
福建省自然科学基金资助项目(2019J01087)
福建省中青年教师教育科研项目(JAT190973)
福建省中青年教师教育科研项目(JAT170780)
福建省教育厅A类科技项目(JA15628)
/
| 〈 |
|
〉 |