时空白噪声驱动的分数阶偏微分方程的平均原理

岳红格 ,  许勇

宁夏大学学报(自然科学版中英文) ›› 2025, Vol. 46 ›› Issue (01) : 1 -6.

PDF (532KB)
宁夏大学学报(自然科学版中英文) ›› 2025, Vol. 46 ›› Issue (01) : 1 -6. DOI: 10.20176/j.cnki.nxdz.000078
积分方程专栏

时空白噪声驱动的分数阶偏微分方程的平均原理

作者信息 +

Averaging Principle for a Class of Nonlinear Stochastic Fractional Partial Differential Equations

Author information +
文章历史 +
PDF (544K)

摘要

考虑到小噪声扰动的长期影响会使随机系统产生重要特性, 建立了柯西条件下时空白噪声驱动的分数阶偏微分方程的平均原理. 首先,利用时空白噪声的性质和关于空间变量的分数阶微分算子的性质, 证明了随机分数阶偏微分方程的解过程在均方意义下收敛到平均系统的解过程. 最后,给出数值算例, 验证平均原理的正确性.

Abstract

Considering that the long-term effects of small noise disturbances can lead to significant characteristics in stochastic systems, an averaging principle for stochastic fractional partial differential equations driven by space-time white noise and the Cauchy conditions was established in this paper. First, by utilizing the properties of space-time white noise and the characteristics of fractional differential operators with respect to spatial variables, it is proved that the solution process of the stochastic fractional partial differential equations converge to the solution process of the averaged systems in the mean square sense. Finally, numerical examples are provided to verify the correctness of the averaging principle.

Graphical abstract

关键词

分数阶偏微分方程 / 时空白噪声 / 随机平均原理

Key words

fractional differential equations / space-time white noise / stochastic averaging principle

引用本文

引用格式 ▾
岳红格,许勇. 时空白噪声驱动的分数阶偏微分方程的平均原理[J]. 宁夏大学学报(自然科学版中英文), 2025, 46(01): 1-6 DOI:10.20176/j.cnki.nxdz.000078

登录浏览全文

4963

注册一个新账户 忘记密码

近年来,分数阶方程,无论是偏微分方程还是常微分方程,都受到了越来越多的关注,被广泛地应用于物理学、分形介质、量子场、图像分析、风险管理等领域1-3. 时空噪声驱动的分数阶方程,常被解释为一个包含核函数的跳跃型随机积分方程,这使得在研究时空噪声驱动的偏微分方程时,鞅意义下的随机微积分理论有些不能直接适用4. 文中考虑了时空白噪声驱动的分数阶偏微分方程
uε(t,x)t=DxDδαuε(t,x)+εf(t,uε(t,x))+εg(t,uε(t,x))x +εσ(t,uε(t,x))2W(t,x)tx,uε(0,x)=u0(x),xR,t[0,T],T<
其中:ε(0,ε0]是一个正的参数,ε0是固定的参数; [α]α的整数部分,mΝ,1mαxδα是关于空间变量的分数阶微分算子;W=W(t,x),t[0,T],xR被称为时空白噪声5. 目前已知,文献[6]给出了适当的条件,确保系统弱解轨迹的存在性、唯一性和光滑性. 此外,文中更关注ε趋于0时随机系统(1)的解更详细的性质.
随机平均原理是一种有效的分析工具,可用于描述动态系统的行为7-9. 许多学者对随机平均原理进行了研究,并将其应用于不同类型的随机微分方程. 例如,Cerrai等10、Dong等11和Wang等12研究了带有不同随机积分的无限维随机偏微分方程. Bréhier13和Fu等14研究了随机偏微分方程中的弱收敛问题. Radchenko15研究了一类由随机测度μ驱动的随机热方程,其中随机测度μ仅在概率上满足σ可加性. 之后,Shen等16建立了由随机测度驱动的分数阶热方程的平均化原理.以上研究都是建立在时间噪声下的偏微分方程的平均原理,文中将空间变量引入分数阶偏微分方程,建立时空噪声扰动下偏微分方程的平均原理,将拉普拉斯算子推广到一般的分数阶偏微分方程,同时弱化对空间变量求导的条件,讨论更一般的柯西条件下分数阶时空噪声驱动的偏微分方程的均方收敛.

1 预备知识

四元组Ω, F, Ftt0, Ρ是通常假设的随机基. Ε表示概率测度Ρ下的期望. 随机流Ft定义为

Ft=σW(s,x):0st,xR,

W(t,x):0tT,xR产生一个连续的正交鞅测度5.

分数微分算子定义为

xδαϕ(x)=F-1δψα(λ)F{ϕ(x);λ};x,

其中

δα(λ)=-λαexp-iδπ2sgnλ

δmin{α-α2,2+α2-α}是小于等于α的最大偶数,并且当δ=0时,α2Ν+1FF-1分别是傅里叶变换和傅里叶逆变换. 算子xδα是空间L2R上的闭集, 是半群的无穷小生成元. 特别地,当α=2时,xδα就是拉普拉斯算子.

假设α(1,)\Ν可测函数f,g,σ[0,]×R×RR满足Lipschitz增长条件.

(H1) 对于任意的T>0,存在一个有界函数K(t)>0,使得对于任意的t[0,T]p,q,rR,有

f(t,r,p)+g(t,r,p)+σ(t,r,p)K(t)(1+p),
f(t,r,p)-f(t,r,q)+g(t,r,p)-g(t,r,q)+σ(t,r,p)-σ(t,r,q)K(t)p-q,

若系统(1)的系数f,gσ满足假设(H1)6,则称可测的随机场u(t,x),t[0,T],xR为系统(1)在区间[0,T]上的温和解. 对于所有的t[0,T]xR,u(t,x),t[0,T]Ft可适的,并且u(t,x)满足积分方程

uε(t,x)=-+Gα(t,x-y)u0(y)dy+ε0t-+Gα(t-s,x-y)f(s,uε(s,y))dyds-ε0t-+Gαy(t-s,x-y)g(s,uε(s,y))dyds+ε0t-+Gα(t-s,x-y)σ(s,uε(s,y))dW(s,y).

此外,有sup0tTsupxRΕu(t,x)p<. 柯西问题的基本解是与系统(1)有关的格林函数,即

tG(t,x)=DxDδαG(t,x),t>0,xR,G(0,x)=δ0(x),

其中δ0是狄拉克分布. 经傅里叶计算得

Gαt,x=F-1expδψαλt;x=12π-+exp-iλx-tλαexp-iδπ2sgnλdλ

更多性质可参考文献[4].

下面研究整个实数域上的标准随机分数阶偏微分方程的平均原理.

2 随机平均原理

接下来,将给出时空噪声驱动的分数阶偏微分方程平均原理的证明. 随机分数阶偏微分方程的平均方程为

zε(t,x)t=DxDδαzε(t,x)+εf¯(zε(t,x))+εg¯(zε(t,x))x+εσ¯zε(t,x)2W(t,x)tx,zε(0,x)=u0(x),xR,t[0,T],T<.

f¯(x),g¯(x),σ¯(x)为可测函数,系统(3)的解可以用更简单的平均过程近似,即

zε(t,x)=-+Gα(t,x-y)u0(y)dy+ε0t-+Gα(t-s,x-y)f¯(zε(s,y))dyds-ε0t-+Gαy(t-s,x-y)g¯(zε(s,y))dyds+ε0t-+Gα(t-s,x-y)σ¯(zε(s,y))dW(s,y).

(H2) 假设下列不等式成立

1T10T1f(s,y)-f¯(y)2dsϕ1(T1)(1+y2)
1T10T1g(s,y)-g¯(y)2dsϕ2(T1)(1+y4)
1T10T1σ(s,y)-σ¯(y)2dsϕ3(T1)(1+y2) 

其中:T1[0,T]ϕi(T1)是正的有界函数,且limT1ϕi(T1)=0,i=1,2,3.

下面证明随机分数阶平均方程的解均方收敛到原始随机分数阶偏微分方程的解.

定理1 假设条件(H1)、(H2)成立,对于任意δ0>0,存在L>0,ε1(0,ε0]β(0,1),使得对于任意的ε(0,ε1],下式成立:

Εsupt[0,Lε-β]uε(t,x)-zε(t,x)2δ1.

证明 由方程(2)和方程(4)整理得

uε(t,x)-zε(t,x)=ε0t-Gα(t-s,x-y)(f(s,uε(s,y)-f¯(zε(s,y)))dyds-ε0t-Gαy(t-s,x-y)(g(uε(s,y))-g¯(zε(s,y)))dyds+ε0t-Gα(t-s,x-y)(σ(uε(s,y)-σ¯(zε(s,y)))dW(s,y).

利用基本不等式x1+x2++xn2Cn(x12+x22++xn2),

Εsup0tuuε(t,x)-zε(t,x)2I1(t)+I2(t)+I3(t),

其中

I1(t) =3ε2Εsup0tu0t-+Gα(t-s,x-y)(f(s,uε(s,y))-f¯(zε(s,y)))dyds2
I2(t) =3ε2Εsup0tu0t-+Gαy(t-s,x-y)(g(s,uε(s,y))-g¯(zε(s,y)))dyds2,
I3(t) =3εΕsup0tu0t-+Gα(t-s,x-y)(σ(s,uε(s,y))-σ¯(zε(s,y)))dW(s,y)2.

首先,对于I1(t),利用Hölder不等式、(H1)和式(5)

I1(t)3ε2Εsup0tu0tsupyf(s,uε(s,y))-f¯(zε(s,y))|2-+Gα(t-s,y)dyds3ε2Εsup0tu0tsupyf(s,uε(s,y))-f¯(zε(s,y))23ε2Ε0usup0ss',yf(s,uε(s,y))-f(s,zε(s,y))2ds'+3ε2Εsup0tu0tsupyf(s,zε(s,y))-f¯(zε(s,y))2ds3ε20uΕsup0st,yf(s,uε(s,y))-f(s,zε(s,y))2dt+3ε2Εsup0tut1t0tsupyf(s,zε(s,y))-f¯(zε(s,y))2ds3ε2K(t)0uΕsup0st,yuε(s,y)-zε(s,y)2dt+3ε2sup0tuyt ϕ1(t)1+Εzε(t,y)3ε2K(t)0uΕsup0st,yuε(s,y)-zε(s,y)2dt+3ε2uK121+sup0tuyΕzε(t,y),

其中K12是一个正的常数.

对于I2(t)利用Hölder不等式、(H1)和式(6)

I2(t)3ε2Εsup0tu0tsupyg(s,uε(s,y))-g¯(zε(s,y))2-+Gαy(t-s,y)dyds3ε2Εsup0tu0t(t-s)-1αsupyg(s,uε(s,y))-g¯(zε(s,y))2ds3ε2Εsup0tu0t(t-s)-1αsupyg(s,uε(s,y))-g(s,zε(s,y))2ds+3ε2Εsup0tu0t(t-s)-1αsupyg(s,zε(s,y))-g¯(zε(s,y))2ds3ε20u(t-s)-1αΕsup0st,yg(s,uε(s,y))-g(s,zε(s,y))2dt+3ε2u12-1αΕsup0tut121t0tsupyg(s,uε(s,y))-g¯(zε(s,y))4ds123ε20u(t-s)-1αΕsup0st,yg(s,uε(s,y))-g(s,zε(s,y))2dt+3ε2u12-1αsup0tu,yt12ϕ1(t)1+Εzε(t,y)23ε2K(t)0t(t-s)-1αΕsup0st,yuε(s,y)-zε(s,y)2dt+3ε2u12-1αK221+sup0tuΕzε(t,y)2,

其中K22是一个正的常数.

对于I3(t),利用Burkholder-Davis-Gundy不等式、Hölder不等式、(H1)和式(7)

I3(t)3εΕ0u-+Gα2(u-s,x-y)σ(uε(s,y))-σ¯(zε(s,y))2dyds3εΕ0usupyσ(s,uε(s,y))-σ¯(zε(s,y))2ds0u-+Gα2(u-s,y)dyds3εΕ0usupyσ(s,uε(s,y))-σ(s,zε(s,y))2ds+3εΕ0usupyσ(s,zε(s,y))-σ¯(zε(s,y))2ds3ε0uΕsupyσ(s,uε(s,y))-σ(s,zε(s,y))2dt+3εΕu1u0usupyσ(s,zε(s,y))-σ¯(zε(s,y))2ds3εK(t)0uΕsup0st,yuε(s,y)-zε(s,y)2dt+3εsup0tu,ytϕ3(t)1+Εzε(s,y)23εK(t)0uΕsup0st,yuε(s,y)-zε(s,y)2dt+3εuK321+sup0tu,yΕzε(s,y)2

其中K32是一个正的常数.

整理不等式(9)~(11),可得

Εsup0tuuε(t,x)-zε(t,x)23ε2K(t)0tΕsup0st,yuε(s,y)-zε(s,y)2dt+3ε2uK121+Εsup0styzε(t,y)2+3ε2K(t)0tt-s-1αΕsup0st,yuε(s,y)-zε(s,y)2dt+3ε2u1-1αK221+Εsup0st,yzε(s,y)2+3εK(t)0uΕsup0st,yuε(s,y)-zε(s,y)2+3εuK321+sup0tu,yΕzε(t,y)23εK(t)(ε+1)0uΕsup0st,yuε(s,y)-zε(s,y)2+3εu(εK12+εK22+K32)+3ε2K(t)0t(t-s)-1αΕsup0st,yuε(s,y)-zε(s,y)2dt.

根据Gronwall-Bellman不等式可得

Εsupt[0,u]uε(t,x)-zε(t,x)23εu(εK12+εK22+K32)exp3ε(ε+1)K(t)Cα.

β(0,1)L>0,使得对于任意的t(0,Lε-β][0,T],有

Εsupt(0,Lε-β]uε(t,x)-zε(t,x)2Kε1-β,

其中K=3εuεK12+εK22+K32exp3ε(ε+1)K(t)Cα是一个正的常数.

因此,任给常数δ1>0,ε1(0,ε0]ε(0,ε1]对任意的t(0,Lε-β],

Εsupt(0,Lε-β]uε(t,x)-zε(t,x)2δ1.

3 数值算例

现在举例验证平均原理的正确性717-18. 考虑下列系统

uεt=DxDδαuε+2εuεcos2t+2εx4sin2tuεx+ε2W(t,x)tx,uε(t,0)=uε(t,1)=0,uε(0,x)=u0(x),xR,t[0,T],T<,

其中:f(t,uε)=2uεcos2tg(t,uε)=2x4sin2tuεσ(t,uε)=1α=2,  δ=0,则

f¯(t,uε)=1π0πf(t,uε)=uε,g¯(t,uε)=1π0πg(t,uε)=x4uε,σ¯(t,uε)=1.

观察给出的函数具体形式,满足条件(H1). 因此,平均后的随机偏微分方程为

zεt=DxDδαzε+εzε+εx4zεx+ε2W(t,x)tx,zε(t,0)=zε(t,1)=0,zε(0,x)=z0(x),xR,t[0,T],T<.

图1所示,系统(12)的解uε在均方意义下收敛到平均方程(13)的解zεx0x=z0(x)=sinπx,T1=π,α=2ε=0.10.010.001),这与定理1给出的结论一致.

注1 Shi等19考虑了柯西条件下分数阶偏微分方程全局解的存在性和唯一性,因此,可以继续讨论时空Lévy噪声下分数阶偏微分方程的平均原理.

参考文献

[1]

TRUMAN A, WU Jianglun. On a stochastic nonlinear equation arising from 1D integro-differential scalar conservation laws[J].Journal of Functional Analysis, 2006, 238(2): 612-635.

[2]

MUELLER C. The heat equation with Lévy noise[J]. Stochastic Processes and Their Applications199874(1):67-82.

[3]

褚丽敏,胡卫敏,苏有慧. 一类含有p-Laplacian算子的半正分数阶微分方程脉冲边值问题正解的存在性[J].宁夏大学学报(自然科学版)202243(4):341-347.

[4]

YUE HonggeXU YongJiao ZHE. Averaging principle for semilinear stochastic partial differential equations involving space-time white noise[J]. Applied Mathematics Letters2023143: 108686.

[5]

WALSH J B. An introduction to stochastic partial differential equations[C]// HENNEQUIN P L. École d’Été de Probabilités de Saint Flour XIV-1984. Lecture Notes in Mathematics, vol. 1180. Berlin, Heidelberg: Springer, 1986:265-439.

[6]

DEBBI LDOZZI M. On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension[J]. Stochastic Processes and Their Applications2005115(11): 1764-1781.

[7]

XU YongDUAN JinqiaoXU Wei. An averaging principle for stochastic dynamical systems with Lévy noise[J]. Physica D: Nonlinear Phenomena2011240(17): 1395-1401.

[8]

PEI BinINAHAMA YXU Yong. Averaging principles for mixed fast-slow systems driven by fractional Brownian motion[J].Kyoto Journal of Mathematics202363(4):721-748.

[9]

CERRAI S. A Khasminskii type averaging principle for stochastic reaction-diffusion equations[J]. The Annals of Applied Probability200919(3): 899-948.

[10]

CERRAI SFREIDLIN M. Averaging principle for a class of stochastic reaction-diffusion equations[J]. Probability Theory and Related Fields2009144(1/2): 137-177.

[11]

DONG ZhaoSUN XiaobinXIAO Huiet al. Averaging principle for one dimensional stochastic Burgers equation[J].Journal of Differential Equations2018265(10):4749-4797.

[12]

WANG WROBERTS A J. Average and deviation for slow-fast stochastic partial differential equations[J]. Journal of Differential Equations2012253(5): 1265-1286.

[13]

BRÉHIER C E. Orders of convergence in the averaging principle for SPDEs: the case of a stochastically forced slow component[J]. Stochastic Processes and Their Applications2020130(6): 3325-3368.

[14]

FU HongboWAN LiLIU Jichenget al. Weak order in averaging principle for stochastic wave equation with a fast oscillation[J]. Stochastic Processes and Their Applications2018128(8): 2557-2580.

[15]

RADCHENKO V. Averaging principle for the heat equation driven by a general stochastic measure[J]. Statistics & Probability Letters2019146:224-230.

[16]

SHEN GuangjunWU JianglunYIN Xiuwei. Averaging principle for fractional heat equations driven by stochastic measures[J]. Applied Mathematics Letters2020106:106404.

[17]

YUE HonggeXU YongWANG Ruifanget al. Averaging principle of stochastic Burgers equation driven by Lévy processes[J]. Journal of Mathematical Physics202364(10):103506.

[18]

XU WenjingDUAN JinqiaoXU Wei. An averaging principle for fractional stochastic differential equations with Lévy noise[J]. Chaos202030(8): 083126.

[19]

SHI KehuWANG Yongjin. On a stochastic fractional partial differential equation driven by a Lévy space-time white noise[J]. Journal of Mathematical Analysis and Applications2010364(1): 119-129.

基金资助

宁夏自然科学基金资助项目(NZ2024AAC03003)

国家自然科学基金资助项目(12072264)

AI Summary AI Mindmap
PDF (532KB)

66

访问

0

被引

详细

导航
相关文章

AI思维导图

/