细胞外囊泡在细菌和病毒感染中的免疫调控作用

吴一鸣 ,  赵刚 ,  王玉炯

宁夏大学学报(自然科学版中英文) ›› 2025, Vol. 46 ›› Issue (01) : 68 -77.

PDF (2401KB)
宁夏大学学报(自然科学版中英文) ›› 2025, Vol. 46 ›› Issue (01) : 68 -77. DOI: 10.20176/j.cnki.nxdz.000084
生命科学

细胞外囊泡在细菌和病毒感染中的免疫调控作用

作者信息 +

Immune Regulatory Roles of Extracellular Vesicles in Bacterial and Viral Infections

Author information +
文章历史 +
PDF (2458K)

摘要

细胞外囊泡(extracellular vesicles, EVs)是一种由细胞分泌、具有膜包裹的异质颗粒.近年来,EVs因可通过运输蛋白质、RNA等生物分子至靶细胞,以调节细胞免疫反应或致病过程,而引起人们极大兴趣.尽管细胞在正常和异常条件下释放EVs的生物发生已得到充分研究,但对于病原体感染如何影响EVs的生物发生,来自宿主细胞的EVs,在病原体感染期间对免疫反应的调控机制尚不明确.受感染细胞分泌的EVs组分包含宿主和病原体来源的特定分子,这些分子可能有助于病原体致病或增强宿主抗感染免疫反应能力.就近年来有关EVs在细菌和病毒感染中的免疫调节及致病作用研究进展进行总结.

Abstract

Extracellular vesicles (EVs), membrane-enclosed heterogeneous particles secreted by cells, have garnered significant attention for their ability to transport bioactive molecules (e.g.,proteins and RNA) to recipient cells, thereby modulating immune responses or pathogenic processes. While the biogenesis of EVs under physiological and pathological conditions has been extensively characterized, the mechanisms by which pathogen infections influence EVs release and how host-derived EVs regulate immune responses during infections remain poorly understood. EVs secreted by infected cells contain both host-and pathogen-derived molecules, which may either promote pathogen virulence or enhance host anti-infective immunity. This review systematically summarizes recent advances in understanding the dual roles of EVs in immune regulation and pathogenesis during bacterial and viral infections.

Graphical abstract

关键词

细胞外囊泡 / 生物发生 / 免疫反应 / 细菌感染 / 病毒感染

Key words

extracellular vesicles / biogenesis / immune regulation / bacterial infection / viral infection

引用本文

引用格式 ▾
吴一鸣,赵刚,王玉炯. 细胞外囊泡在细菌和病毒感染中的免疫调控作用[J]. 宁夏大学学报(自然科学版中英文), 2025, 46(01): 68-77 DOI:10.20176/j.cnki.nxdz.000084

登录浏览全文

4963

注册一个新账户 忘记密码

20世纪80年代,细胞外囊泡(extracellular vesicles,EVs)被认为是细胞废物.近年来,有关EVs的研究在相关领域全面展开,研究结果显示,EVs在介导和调节与生理和病理过程相关的细胞通讯中起关键作用1.EVs携带来自宿主细胞的多种活性成分,如脂质、蛋白质、mRNA和microRNA2,EVs表面受体使它们能够靶向受体细胞并被受体细胞捕获.此外,EVs可被邻近和远处的细胞选择性地摄取,以作为细胞间信号传导和生物功能调节的重要因子3.根据来源,EVs可分为外泌体、微囊泡和凋亡囊泡:外泌体的大小为30~150 nm,外泌体由多泡内体(multivesicular endosome,MVE)分泌产生,与细胞表面融合后释放,成为内体系统的中间体.微囊泡的大小为50~1 000 nm,与外泌体不同,微囊泡通过胞吞作用、胞吐作用分泌.微囊泡和外泌体的主要区别在于,微囊泡的分泌过程不涉及细胞内膜.相比之下,程序性细胞死亡过程中产生的凋亡小体是细胞外囊泡中最大的一种,通常凋亡囊泡大小为1~5 μm4.EVs可调节不同的生物过程,如细胞运动、分化、增殖、凋亡和免疫.目前,关于EVs的生物发生与组分分选、细胞外动力学特征与组分的功能递送等研究是热点领域.近年来,EVs在细菌和病毒感染过程中的免疫调控作用引起人们的极大兴趣5.研究结果表明6,多种外部刺激可调节EVs的形成和分泌,来自宿主细胞的EVs,通过多种机制刺激或抑制宿主先天免疫反应,进而限制或促进病原体感染.如流感病毒感染小鼠后,宿主细胞分泌在气道中的外泌体,已被证明含有具有抗流感活性的宿主蛋白和能够触发宿主免疫反应的病毒蛋白7.文中综述EVs在细菌和病毒感染过程中的相关作用研究,总结病原体感染引起EVs发生差异化,EVs差异化组分在调控宿主抗细菌、病毒感染免疫中的作用.

1 生理状态/感染状态下细胞分泌的EVs差异

1.1 EVs发生机制

EVs是内吞作用的产物.早期内涵体(early-sorting endosomes, ESEs)由细胞质膜内陷形成,不同ESEs融合并发育成晚期内涵体(late-sorting endosomes, LSEs),LSEs再进一步形成细胞内多膜体(multivesicular bodies,MVBs),MVBs与质膜融合并将成熟的EVs释放到细胞外8-9.EVs的生物发生需要胞内体分选复合物(endosomal sorting complex required for transport, ESCRT)和相关蛋白质(Hrs,CHMP4,VPS4,VTA1,TSG101,ALIX)参与.ESCRT是一种保守的蛋白质复合物,由大约20种蛋白质组成,包含4个复合物(ESCRT-0,ESCRT-I,ESCRT-II,ESCRT-III),其中,ESCRT-0,ESCRT-I,ESCRT-II可经筛选包裹进入EVs组分,ESCRT-III参与内体膜变形并形成EVs10.此外,神经酰胺、磷脂酶D2(Phaspholipase D2,PLD2)、ADP核糖基化因子6(ADP ribosylation factor 6,arF6)、四跨膜蛋白CD63,CD81也可介导细胞并通过ESCRT的非依赖性途径形成和分泌EVs(图111-12.但是,由于内吞作用的复杂性,迄今为止外泌体释放的机制尚不明确 .

1.2 EVs存在明显差异

正常生理状态下,EVs的生物发生在维持体内平衡和促进生物体修复方面发挥着不可忽视的作用.在病理状态下,EVs的生物发生及组成可能因活化阶段、病原感染、外源刺激、肿瘤转化和亲本细胞的活力而不同.大量的研究结果显示,病原体感染会导致细胞分泌的EVs发生改变,具体表现为EVs的大小、含量和来源的异质性发生改变,影响EVs受体细胞的存活、死亡、炎症和免疫反应,或协助病原体进入和停留在受体细胞中.

1.2.1 EVs数量的改变

随着感染病原体细胞的活性改变、病原与宿主细胞之间的相互作用,宿主细胞分泌的EVs数量会发生改变.轮状病毒(rotavirus,RV)感染研究结果显示13,RV感染人肠道上皮细胞的培养基中含有大量热休克同源蛋白70(heat shock protein 70, Hsps70)、转化生长因子-β(transforming growth factor-β,TGF-β)和其他EVs蛋白,这表明RV感染会促进人肠道上皮细胞的EVs释放.此外,病原体也会驱动EVs产生,如小鼠卡介苗感染研究结果显示14,细菌载量在感染后第10天达到峰值后逐渐下降;血清中的EVs浓度显示出相似的动力学特征;感染小鼠血清中的EVs峰值,相比未感染小鼠,大约高出100倍.近期的研究结果表明15,病原体感染可导致EVs标志物蛋白细胞内合成,同时促进感染细胞的EVs组装和分泌.如埃博拉病毒(Ebola virus,EBOV)的基质蛋白40(VP40)在感染条件下,可诱导EVs标志性蛋白CD63、凋亡诱导因子相互作用蛋白X(ALIX)和运输所需的ESCRT-II蛋白复合物高表达,进而促进EVs的生物发生.

1.2.2 EVs膜结构的改变

EVs膜的结构可因感染而发生变化,包括结构蛋白和脂质数量的改变16.研究结果表明17,线虫病感染后,EVs膜中缩醛磷脂的含量增加而胆固醇、鞘磷脂的含量降低;结核分枝杆菌(Mycobacterium tuberculosisM. tuberculosis)感染巨噬细胞后,41种蛋白质在M. tuberculosis感染细胞分泌的外泌体中含量显著升高,其中,26种为膜蛋白18;在钩端螺旋体感染大鼠尿液的EVs中,膜蛋白中丙氨酰氨肽酶(CD13)的含量显著增加19.

1.2.3 EVs组分的改变

大量的研究结果显示20-36,病原体感染宿主细胞会导致EVs组分显著变化,引起宿主细胞中核酸物质、蛋白质、多糖及脂质等物质的含量发生改变,此外,病原体相关物质也可被包裹进入EVs(表1).

2 感染状态下细胞释放的EVs调控免疫反应

2.1 EVs促进宿主免疫反应

细菌感染宿主细胞期间释放的EVs,影响宿主免疫反应和感染结局.研究结果表明37-38M. tuberculosis作为一种胞内寄生细菌,感染人巨噬细胞(THP-1)和小鼠巨噬细胞(RAW 264.7)后释放的外泌体,可诱导TNF-α,iNOS,IL-12产生并募集巨噬细胞和中性粒细胞,以调节宿主细胞免疫反应.M. tuberculosis感染间充质干细胞(mesenchymal stem cells, MSCs)后分泌的外泌体,以TLR2,TLR4,Myd88依赖的方式促进TNF-α,RANTES,iNOS产生,并诱导巨噬细胞炎症反应39.上述研究结果表明,来自M. tuberculosis感染细胞的EVs可激活和募集宿主免疫细胞,进而影响宿主细胞的先天性和获得性免疫反应.沙门氏菌感染的巨噬细胞释放的外泌体可促进人单核细胞炎症反应32.大肠杆菌(Escherichia coliE.coli)感染的脑微血管内皮细胞(brain microvessel endothelial cells, BMECs)释放的外泌体,也可促进星形胶质细胞的炎症反应40.马尔尼菲蓝状菌(Talaromyces marneffei)感染人巨噬细胞后释放的外泌体,可促进人巨噬细胞中ERK1/2通路的激活及IL-10,TNF-α的分泌,进而诱导炎症反应41.尿路致病性大肠埃希菌(uropathogenic Escherichia coli, UPEC)感染会诱导膀胱上皮细胞(mouse bladder cancer cells)MB49分泌大量外泌体,然后通过靶向抗癌基因PTEN和激活MAPK/JNK信号通路,诱导巨噬细胞TNF-α表达35.从副链球菌(Streptococcus parauberisS. parauberis)感染的橄榄比目鱼血浆中分离出的外泌体,可促进RAW264.7细胞上调IL-1β,TNF-α表达42.鼠伤寒沙门氏菌(Serovar Typhimurium)感染巨噬细胞分泌的外泌体,可触发幼稚巨噬细胞和树突状细胞中TNF-α表达和释放,并刺激RANTES,IL-1,MIP-2,CXCL1,MCP1,sICAM-1,GM-CSF,G-CSF等细胞因子分泌43.此外,鸡毒支原体是鸡慢性呼吸系统疾病(chronic respiratory disease, CRD)的重要病原体之一,在其感染II型肺细胞(CP-II)后分泌的外泌体中,miR-181a-5p通过直接靶向鸡胚成纤维细胞PPM1B,激活TLR2介导的MyD88/NF-κB信号通路,以促进炎症细胞因子表达,从而防御鸡毒支原体感染44.最新的研究结果表明,鹦鹉热衣原体感染树突状细胞分泌的EVs,可诱导自然杀伤细胞产生IFN-γ,TNF-α,然后两者协同诱导感染细胞凋亡,以减少衣原体生长并扩散到邻近细胞中45.总体而言,细菌感染期间EVs在募集和调节宿主免疫反应中发挥重要作用.

2.2 EVs抑制宿主免疫反应

来自细菌感染宿主细胞的EVs也可抑制宿主免疫反应.M. tuberculosis感染巨噬细胞分泌的EVs含有糖脂阿拉伯甘露聚糖(lipoarabinomannan,LAM),可抑制T细胞受体信号传导和活化反应,通过诱导免疫抑制促进M. tuberculosis在感染细胞内大量增殖46-47.同时,M. tuberculosis感染细胞分泌的EVs也可抑制巨噬细胞对INF-γ的反应能力,从而抑制巨噬细胞的抗原提呈功能.此外,鸟分枝杆菌感染巨噬细胞分泌的EVs,可下调幼稚细胞中IFN-γ,诱导基因表达,进而抑制MHC-II,CD64免疫球蛋白受体表达48.研究结果显示,支原体感染肿瘤细胞释放的EVs携带支原体成分,能抑制T细胞的活性49.上述研究结果表明,感染细胞分泌的EVs,可通过细胞自身组分或病原体分子抑制宿主细胞的免疫反应.

3 病毒感染状态下细胞释放的EVs调控病毒致病力

3.1 EVs促进病毒感染

1)病毒通过EVs递送病毒蛋白、核酸,以促进感染.研究结果显示,病毒可通过感染细胞分泌的EVs递送病毒蛋白,以促进病毒感染50.如人类免疫缺陷病毒(human immunodeficiency virus, HIV)感染细胞分泌的EVs,含有HIV蛋白Nef (negative factor, Nef),Nef通过调节内吞作用、细胞骨架重排和细胞器运输,增加HIV感染细胞释放的EVs数量,进而促进EVs介导的HIV感染.此外,病毒也通过感染细胞分泌的EVs递送病毒核酸,以促进病毒感染.丙型肝炎病毒(hepatitis C virus,HCV)感染人肝癌细胞后释放的外泌体,包含全长病毒RNA基因组,可将病毒核酸递送到未感染的Huh7.5.1细胞中,并以不依赖病毒粒子的方式引起感染22.研究结果表明,口蹄疫病毒(foot-and-mouth disease virus, FMDV)感染细胞分泌的EVs,含有病毒基因组RNA和部分病毒蛋白,可感染幼稚细胞23.对猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome, PRRSV)的研究结果表明,感染细胞分泌的EVs含有病毒基因组RNA,可在幼稚细胞中引发感染,进而促进病毒传播51.人类免疫缺陷病毒1型(human immunodeficiency virus type 1,HIV-1)感染细胞分泌的外泌体,含有抑制靶细胞迁移的病毒、细胞来源蛋白质及可增加核基因表达、促进感染的dsRNA/ssRNA,有助于病毒感染宿主细胞52.

2)病毒通过EVs递送成熟病毒粒子,以促进感染.人疱疹病毒6型(human herpers viruses 6, HHV-6)感染细胞释放的外泌体,含有成熟病毒粒子,通过递送病原体相关分子(致病基因和蛋白质)甚至整个病原体至受体细胞,进而促进病毒感染53.

3)病毒通过EVs递送细胞组分调控免疫反应,以促进感染.病毒可通过感染细胞分泌的EVs中的组分促进病毒感染,如在HIV病毒感染巨噬细胞分泌的外泌体中,miR-23a,miR-27a分别损害肺上皮细胞的紧密连接屏障和线粒体功能,进而增加肺泡上皮细胞对HIV的易感性54.类似的研究结果表明,新城疫病毒(newcastle disease virus, NDV)感染HeLa细胞释放的EVs,含有miR-1273f,miR-1184,miR-198,可抑制受体细胞中干扰素β(interferon-β,IFNβ)基因的表达,进而促进NDV的弥散性感染55.乙型肝炎病毒(hepatitis B virus, HBV)感染肝细胞分泌的外泌体,可将miR-21,miR-29a和其他具有免疫调节功能的miR转运到巨噬细胞(THP-1)中,导致巨噬细胞中IL-12p35的表达下调,从而抑制宿主先天性免疫应答25.此外,研究结果显示,人类疱疹病毒4型,即EB病毒(Epstein-Barr virus, EBV),感染细胞分泌的外泌体,通过Fas配体介导的外源性通路诱导B细胞、T细胞凋亡56.上述研究结果表明,病毒通过EVs递送病毒蛋白、核酸和成熟病毒粒子引起感染,也通过调节EVs组分抑制受体细胞的抗病毒先天性和适应性免疫反应,从而促进病毒感染.

3.2 EVs抑制病毒感染

1)受感染细胞通过EVs递送病毒相关分子,以激活宿主免疫反应,进而抑制病毒感染.研究结果表明,受病毒感染细胞分泌的EVs,通过递送病毒相关分子抑制病毒感染57.如EBV感染B细胞后释放的EVs携带病毒RNA,这些RNA被递送到树突状细胞(dendritic cell,DC)后可激发抗病毒免疫反应.丙型肝炎病毒(hepatitis C virus, HCV)感染细胞分泌的外泌体,能够将病毒RNA递送到浆细胞样树突状细胞(plasmacytoid dendritic cells, pDC),并促进抗病毒Ⅰ型干扰素(interferon,IFN)的产生,从而启动针对病毒的先天性免疫反应58.

2)受感染细胞通过EVs中细胞组分激活宿主免疫反应,以抑制病毒感染.病毒感染细胞释放的EVs,在刺激先天免疫反应中所依赖的物质不局限于病毒分子,也通过EVs中细胞组分抑制病毒感染.研究结果显示,病毒感染细胞释放的EVs中含有IFN信号通路中间体或IFN刺激基因(interferon stimulated gene, ISG),可抑制病毒在靶细胞中复制和传播59.例如,甲型流感病毒(influenza A virus, IAV)感染细胞后宿主hsa-miR-1975由EVs递送到受体细胞,进而诱导IFN表达及抗病毒反应.狂犬病病毒(rabies virus, RABV)感染细胞将miR-423-5p释放到EVs中,诱导受体细胞中IFN-β表达,从而抑制病毒在受体细胞中复制60.环磷酸鸟苷-环磷酸腺苷(cGAMP)响应HIV-1感染而产生,通过EVs被递送到未感染细胞中,以激活IFN基因刺激因子(stimulator of interferon genes, STING)通路,从而发挥抗病毒免疫反应61.源自HSV-1感染细胞的EVs含有STING和其他激活ISG转录的宿主因子,如ISG15,ISG5662.此外,病毒感染细胞释放的EVs还可介导IFN诱导的抗病毒活性.如HBV感染肝脏非实质细胞释放的EVs含有IFN-α,IFN-α由HAV受体TIM-1输送到受体肝细胞,从而保护肝细胞免受HBV感染63.最后,受感染细胞释放的EVs也可递送IFN诱导的跨膜蛋白(interferon-induced transmembrane protein, IFITM),使受体细胞发挥抗病毒反应.IFITM是先天效应蛋白,可限制许多包膜病毒(如HCV)进入宿主细胞,并激活适应性免疫反应,从而抑制病毒感染.如在登革热病毒(dengue virus, DENV)感染期间,感染细胞通过释放含有IFITM2蛋白的EVs阻止DENV进入受体细胞64.IAV感染细胞释放的EVs携带IFITM,可刺激未感染细胞分泌IL-6,TNF,MCP-164,从而抑制病毒感染.EVs除了调控先天免疫和适应性免疫反应外,还可表达与病毒表面蛋白结合的病毒受体,从而抑制病毒颗粒对宿主细胞的吸附.如在IAV感染期间,存在于呼吸道上皮细胞分泌的EVs表面的唾液酸,可阻止病毒结合宿主细胞受体并抑制病毒进入靶细胞65.寨卡病毒(Zika virus,ZIKV)感染细胞释放出表面含有E蛋白的EVs,减弱了靶向病毒粒子E蛋白抗体介导的抗体依赖性增强作用66.综上所述,受感染细胞分泌的EVs,可以促进未感染受体细胞的抗病毒先天性和适应性免疫反应,从而抑制病毒感染.

4 结语

EVs在细胞之间信息的传递、影响受体细胞的行为和功能方面起着至关重要的作用.EVs研究的最新进展极大地增强了对宿主如何与病原菌相互作用的理解.了解EVs在细胞通讯中的调节机制对EVs的临床应用至关重要.文中重点阐述受感染细胞分泌EVs的生物发生、病原体感染引起的EVs组分改变和EVs在病原体感染期间对免疫系统的调节作用.一方面,EVs通过传递病原体相关分子、参与病原体免疫逃逸和诱导免疫细胞凋亡来抑制免疫反应,以促进病原体感染;另一方面,EVs也可诱导受体细胞免疫反应,包括增强单核细胞-巨噬细胞、NK(natural killer cell)细胞、T(T-lymphocyte)细胞和B(B-lymphocyte)细胞的功能,以发挥抗感染作用,进而抑制病原体增殖和感染.感染细胞分泌的EVs在调控宿主免疫反应中的作用复杂多变,涉及增强免疫反应、免疫逃逸和抑制机制等.对病原体感染细胞分泌的EVs中差异组分调控宿主免疫反应机制进行深入研究,有助于全面认识EVs在细菌和病毒感染中的抗感染或致病作用,对于开发有效的抗细菌、抗病毒感染策略和治疗方法也至关重要.此外,病原体特异性EVs因子作为新型疾病生物标志物,也备受关注.因为EVs与疾病密切相关,并且在血液和尿液中的含量稳定,可能具有更高的诊断敏感性和特异性,越来越多的研究旨在识别不同疾病中EVs的此类特征,这可能有助于病毒性疾病的诊断、分期及治疗.

因此,EVs的未来研究可朝着以下几个方向发展:首先,开发更先进的分离和分析技术,以提高EVs的纯度和鉴定的准确性,从而确保研究结果的可靠性和可重复性.其次,进一步探索EVs在免疫调节中的具体作用,包括EVs与免疫细胞亚型及信号通路的相互作用,以及EVs在不同疾病状态、同一疾病不同阶段的调控功能变化.此外,需要进行大规模临床研究,以验证EVs作为生物标志物和治疗靶点的有效性和安全性.综上所述,EVs在各种疾病的宿主与病原相互作用中发挥着重要作用,需要对EVs进行更深入、全面的研究,以挖掘EVs在疾病诊治中的巨大潜力.

参考文献

[1]

POUPARDIN RWOLF MMAEDING Net al. Advances in extracellular vesicle research over the past decade: Source and isolation method are connected with cargo and function[J]. Advanced Healthcare Materials202413(19):e2303941.DOI:10.1002/adhm.2023-03941 .

[2]

XIANG HuayuanBAO ChenxuanCHEN Qiaoqiaoet al. Extracellular vesicles (EVs)’ journey in recipient cells: from recognition to cargo release[J]. Journal of Zhejiang University-SCIENCE B: Biomedicine & Biotechnology202425(8):633-655.

[3]

ABELS E RBREAKEFIELD X O. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake[J]. Cellular and Molecular Neurobiology201636(3):301-312.

[4]

KALRA HDRUMMEN G PMATHIVANAN S. Focus on extracellular vesicles: Introducing the next small big thing[J]. International Journal of Molecular Sciences201617(2):170.DOI:10.3390/ijms170-20170 .

[5]

MOULIN CCRUPI M J FILKOW C Set al. Extracellular vesicles and viruses: Two intertwined entities[J]. International Journal of Molecular Sciences202324(2):1036. DOI: 10.3390/ijms24021036 .

[6]

ZOU ChaoyuZHANG YigeLIU Huanet al. Extracellular vesicles: Recent insights into the interaction between host and pathogenic bacteria[J]. Frontiers in Immunology202213:840550. DOI:10.3389/fimmu. 2022.840550 .

[7]

BEDFORD J GINFUSINI GDAGLEY L Fet al. Airway exosomes released during influenza virus infection serve as a key component of the antiviral innate immune response[J]. Frontiers in Immunology202011:887.DOI:10.3389/fimmu.2020.00887 .

[8]

JIN YongMA LeleZHANG Wanyinget al. Extracellular signals regulate the biogenesis of extracellular vesicles[J]. Biological Research202255(1):35. DOI: 10.1186/s40659-022-00405-2 .

[9]

SPENCER NYERUVA L. Role of bacterial infections in extracellular vesicles release and impact on immune response[J]. Biomedical Journal202144(2):157-164.

[10]

SABATKE BROSSI I VSANA Aet al. Extracellular vesicles biogenesis and uptake concepts: A comprehensive guide to studying host-pathogen communication[J]. Molecular Microbiology2024122(5):613-629.

[11]

DIXSON A CDAWSON T RDI VIZIO Det al. Context-specific regulation of extracellular vesicle biogenesis and cargo selection[J]. Nature Reviews Molecular Cell Biology202324(7):454-476.

[12]

KALLURI RLEBLEU V S. The biologyfunctionand biomedical applications of exosomes[J]. Science2020367(6478):eaau6977. DOI: 10.1126/science.aau6977 .

[13]

BARRETO ARODRÍGUEZ L SROJAS O Let al. Membrane vesicles released by intestinal epithelial cells infected with rotavirus inhibit T-cell function[J]. Viral Immunology201023(6):595-608.

[14]

SINGH P PSMITH V LKARAKOUSIS P Cet al. Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo [J]. The Journal of Immunology2012189(2):777-785.

[15]

PLEET M LMATHIESEN ADEMARINO Cet al. Ebola VP40 in exosomes can cause immune cell dysfunction[J]. Frontiers in Microbiology20167:1765. DOI: 10.3389/fmicb.2016.01765 .

[16]

CONDE-VANCELLS JRODRIGUEZ-SUAREZ EEMBADE Net al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes[J]. Journal of Proteome Research20087(12):5157-5166.

[17]

SIMBARI FMCCASKILL JCOAKLEY Get al. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: Implications for exosome stability and biology[J].Journal of Extracellular Vesicles20165:30741.DOI:10.3402/jev.v5.30741 .

[18]

DIAZ GWOLFE L MKRUH-GARCIA N Aet al. Changes in the membrane-associated proteins of exosomes released from human macrophages after mycobacterium tuberculosis infection[J]. Scientific Reports20166:37975.DOI:10.1038/srep37975 .

[19]

RAMACHANDRARAO S PMATTHIAS M AKOKOY-MONDRAGON Cet al. Proteomic analysis of urine exosomes reveals renal tubule response to leptospiral colonization in experimentally infected rats[J]. PLOS Neglected Tropical Diseases20159(3):e0003640. DOI:10.1371/journal.pntd.0003640 .

[20]

QIAN XijingXU ChenFANG Shuoet al. Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection[J]. Stem Cells Translational Medicine20165(9):1190-1203.

[21]

SAHA BKODYS KADEJUMO Aet al. Circulating and exosome-packaged hepatitis C single-stranded RNA induce monocyte differentiation via TLR7/8 to polarized macrophages and fibrocytes[J]. The Journal of Immunology2017198(5):1974-1984.

[22]

RAMAKRISHNAIAH VTHUMANN CFOFANA Iet al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells[J]. Proceedings of the National Academy of Sciences of the United States of America2013110(32):13109-13113.

[23]

ZHANG KeshanXU ShouxingSHI Xijuanet al. Exosomes-mediated transmission of foot-and-mouth disease virus in vivo and in vitro [J]. Veterinary Microbiology2019233:164-173.

[24]

AQIL MMALLIK SBANDYOPADHYAY Set al. Transcriptomic analysis of mRNAs in human monocytic cells expressing the HIV-1 Nef protein and their exosomes[J]. BioMed Research International20152015:492395. DOI: 10.1155/2015/492395 .

[25]

KOUWAKI TFUKUSHIMA YDAITO Tet al. Extracellular vesicles including exosomes regulate innate immune responses to hepatitis B virus infection[J].Frontiers in Immunology20167:335. DOI:10.3389/fimmu.2016.00335 .

[26]

GALLO AVELLA SMIELE Met al. Global profiling of viral and cellular non-coding RNAs in Epstein-Barr virus-induced lymphoblastoid cell lines and released exosome cargos[J]. Cancer Letters2017388:334-343.

[27]

CHEN RuidongZHAO XueWANG Yongxianget al. Hepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G[J]. Scientific Reports20177:40783. DOI: 10 .

[28]

1038/srep 40783.

[29]

FENG ZongdiHENSLEY LMCKNIGHT K Let al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes[J]. Nature2013496(7445):367-371.

[30]

SHIMODA AUEDA KNISHIUMI Set al. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA[J]. Scientific Reports20166:18346.DOI:10.1038/srep18346 .

[31]

WANG JianjunDENG ZhiyongWANG Zeyouet al. MicroRNA-155 in exosomes secreted from helicobacter pylori infection macrophages immunomodulates inflammatory response[J]. American Journal of Translational Research20168(9):3700-3709.

[32]

WANG JianjunYAO YongliangCHEN Xiaomeiet al. Host derived exosomes-pathogens interactions: Potential functions of exosomes in pathogen infection[J]. Biomedicine & Pharmacotherapy2018108:1451-1459.

[33]

BHATNAGAR SSHINAGAWA KCASTELLINO F Jet al. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo [J]. Blood2007110(9):3234-3244. DOI: 10.1182/blood-2007-03-079152 .

[34]

ZHU XiaoyanWANG MenglingCAI Menget al. Protein expression profiles in exosomes of bovine mammary epithelial cell line MAC-T infected with staphylococcus aureus [J]. Applied and Environmental Microbiology202389(4):e0174322. DOI:10 .

[35]

1128/aem.01743-22.

[36]

GAO RuiyingYAO GuotaiWANG Xiaoliet al. Identification of lncRNAs and their regulatory relationships with mRNAs in response to Cryptococcus neoformans infection of THP-1 cells[J]. BioMed Research International2022(3):1-13.DOI:10.1155/2022/5532118 .

[37]

WANG ZihaoJIANG ZimingZHANG Yuet al. Exosomes derived from bladder epithelial cells infected with uropathogenic Escherichia coli increase the severity of urinary tract infections (UTIs) by impairing macrophage function[J]. PLOS Pathogens202420(1):e1011926. DOI: 10.1371/journal.ppat.1011926 .

[38]

RODRIGUES M LNIMRICHTER LOLIVEIRA D Let al. Vesicular trans-cell wall transport in fungi: A mechanism for the delivery of virulence-associated macromolecules?[J]. Lipid Insights20082:27-40.

[39]

SINGH P PLI LiSCHOREY J S. Exosomal RNA from mycobacterium tuberculosis-infected cells is functional in recipient macrophages[J]. Traffic201516(6):555-571.

[40]

BHATNAGAR SSCHOREY J S. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory[J]. Journal of Biological Chemistry2007282(35):25779-2589.

[41]

SINGH P PLEMAIRE CTAN J Cet al. Exosomes released from M. tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophages[J]. PLOS One20116(4):e18564. DOI: 10.1371/journal.pone.0018564 .

[42]

YANG RuichengQU XinyiZHI Shuliet al. Exosomes derived from meningitic escherichia coli-infected brain microvascular endothelial cells facilitate astrocyte activation[J]. Molecular Neurobiology202461(9):7195-7210.

[43]

JI GuangquanFENG ShanREN Honget al. Exosomes released from macrophages infected with talaromyces marneffei activate the innate immune responses and decrease the replication[J]. Immunity, Inflammation and Disease202311(6):e881.DOI: 10 .

[44]

1002/iid3.881.

[45]

JAYATHILAKA E H T TEDIRISINGHE S LDEZOYSA Met al. Exosomes derived from olive flounders infected with Streptococcus parauberis: Proteomic analysis, immunomodulation, and disease resistance capacity[J]. Fish & Shellfish Immunology2024148:109478. DOI: 10.1016/j.fsi.2024.109478 .

[46]

HUI W WHERCIK KBELSARE Set al. Salmonella enterica serovar typhimurium alters the extracellular proteome of macrophages and leads to the production of proinflammatory exosomes[J]. Infection and Immunity201886(2):e00386-17.DOI: 10.1128/IAI.00386-17 .

[47]

ZHAO YaboFU YaliZOU Mengyunet al. Analysis of deep sequencing exosome-microRNA expression profile derived from CP-II reveals potential role of gga-miRNA-451 in inflammation[J]. Journal of Cellular and Molecular Medicine202024(11):6178-6190.

[48]

RADOMSKI NKARGER AFRANZKE Ket al. Chlamydia psittaci-infected dendritic cells communicate with NK cells via exosomes to activate antibacterial immunity[J]. Infection and Immunity201988(1):e00541-19. DOI:10.1128/iai.00541-19 .

[49]

YANG ChenjieRUFFNER M AKIM S Het al. Plasma-derived MHC class II+ exosomes from tumor-bearing mice suppress tumor antigen-specific immune responses[J]. European Journal of Immunology201242(7):1778-1784.

[50]

MAHON R NSANDE O JROJAS R Eet al. Mycobacterium tuberculosis ManLAM inhibits T-cell-receptor signaling by interference with ZAP-70, Lck and LAT phosphorylation[J]. Cellular Immunology2012275(1/2):98-105.

[51]

HARDING C VBOOM W H. Regulation of antigen presentation by mycobacterium tuberculosis: A role for Toll-like receptors[J]. Nature Reviews Microbiology20108(4):296-307.

[52]

YANG ChenjieCHALASANI GNG Y Het al. Exosomes released from mycoplasma infected tumor cells activate inhibitory B cells[J]. PLOS One20127(4):e36138. DOI: 10.1371/journal.pone.0036138 .

[53]

VANPOUILLE CBRICHACEK BPUSHKARSKY Tet al. HIV-1 Nef is carried on the surface of extracellular vesicles[J]. Journal of Extracellular Vesicles202413(7):e12478. DOI: 10.1002/jev2.12478 .

[54]

WANG TingFANG LiurongZHAO Fuweiet al. Exosomes mediate intercellular transmission of porcine reproductive and respiratory syndrome virus[J]. Journal of Virology201892(4):e01734-17. DOI:10 .

[55]

1128/jvi.01734-17.

[56]

CHEN JingLI ChuanyunLI Ronget al. Exosomes in HIV infection[J]. Current Opinion in HIV and AIDS202116(5):262-270.

[57]

SADEGHIPOUR SMATHIAS R A. Herpesviruses hijack host exosomes for viral pathogenesis[J]. Seminars in Cell & Developmental Biology201767:91-100.

[58]

YUAN ZhihongPETREE J RLEE F Eet al. Macrophages exposed to HIV viral protein disrupt lung epithelial cell integrity and mitochondrial bioenergetics via exosomal microRNA shuttling[J]. Cell Death & Disease201910:580.DOI:10.1038/s41419-019-1803-y .

[59]

ZHOU ChangluanTAN LeiSUN Yingjieet al. Exosomes carry microRNAs into neighboring cells to promote diffusive infection of newcastle disease virus[J]. Viruses201911(6):527. DOI: 10.3390/v11060527 .

[60]

AHMED WPHILIP P SATTOUB Set al. Epstein-barr virus-infected cells release fas ligand in exosomal fractions and induce apoptosis in recipient cells via the extrinsic pathway[J]. Journal of General Virology201596(12):3646-3659.

[61]

BAGLIO S RVAN EIJNDHOVEN M AKOPPERS-LALIC Det al. Sensing of latent EBV infection through exosomal transfer of 5’pppRNA[J]. Proceedings of the National Academy of Sciences of the United States of America2016116(5):E587-596. DOI: 10.1073/pnas.1518130113 .

[62]

HUANG MenghaoJIANG JiandongPENG Zonggen. Recent advances in the anti-HCV mechanisms of interferon[J]. Acta Pharmaceutica Sinica B20144(4):241-247.

[63]

LIU Y MTSENG C HCHEN Yichunet al. Exosome-delivered and Y RNA-derived small RNA suppresses influenza virus replication[J]. Journal of Biomedical Science201926(1):58.DOI:10.1186/s12929-019-0553-6 .

[64]

WANG JingyuTENG YaweiZHAO Guanshuet al. Exosome-mediated delivery of inducible miR-423-5p enhances resistance of MRC-5 cells to rabies virus infection[J]. International Journal of Molecular Sciences201920(7):1537.DOI:10.3390/ijms20071537 .

[65]

GENTILI MKOWAL JTKACH Met al. Transmission of innate immune signaling by packaging of cGAMP in viral particles[J]. Science2015349(6253):1232-1236.

[66]

DESCHAMPS TKALAMVOKI M. Extracellular vesicles released by herpes simplex virus 1-infected cells block virus replication in recipient cells in a STING-dependent manner[J]. Journal of Virology201892(18):e01102-18.DOI:10.1128/jvi. 01102-18 .

[67]

WRENSCH FLIGAT GHEYDMANN Let al. Interferon-induced transmembrane proteins mediate viral evasion in acute and chronic hepatitis C virus infection[J]. Hepatology201970(5):1506-1520.

[68]

ZHU XunHE ZhenjianYUAN Jieet al. IFITM3-containing exosome as a novel mediator for anti-viral response in dengue virus infection[J]. Cellular Microbiology201517(1):105-118.

[69]

BEDFORD J GINFUSINI GDAGLEY L Fet al. Airway exosomes released during influenza virus infection serve as a key component of the antiviral innate immune response[J]. Frontiers in Immunology202011:887.DOI:10.3389/fimmu.2020.00887 .

[70]

ZHAO FanfanXU YongfenLIU Naet al. Extracellular vesicles from Zika virus-infected cells display viral E protein that binds ZIKV-neutralizing antibodies to prevent infection enhancement[J]. The EMBO Journal202342(6):e112096. DOI:10.15252/embj.2022112096 .

基金资助

国家自然科学基金资助项目(U22A20505)

国家自然科学基金资助项目(32473030)

AI Summary AI Mindmap
PDF (2401KB)

87

访问

0

被引

详细

导航
相关文章

AI思维导图

/