Nitrate pollution in water bodies has become a pressing ecological and health issue requiring global attention. In recent years, electrochemical nitrate denitrification technology has become a promising solution, gaining attention for its high efficiency and environmental benefits. In this field, gaining a thorough understanding of the mechanisms of nitrate electro-reduction at the metal catalyst surface has become crucial for designing and synthesizing efficient metal catalysts. By rationally designing and regulating the synergistic effects and electronic interactions between catalytic sites, metal catalysts can significantly enhance their activity, selectivity, and stability. This reduces the activation energy of reactions, optimizes the adsorption energy distribution for intermediates, and promotes the efficient conversion of nitrate to nitrogen gas or ammonia. This paper systematically reviews the latest advancements in monometallic and bimetallic catalysts for electrocatalytic nitrate reduction, providing an in-depth analysis of their catalytic mechanisms, main types, and synergistic effects. Furthermore, the paper explores the advantages and challenges of these catalysts in practical applications, aiming to provide guidance and insights for future research and industrial applications.
原位微分电化学质谱(differential electrochemical mass spectrometry,DEMS)常被用于检测电化学反应中挥发性中间体和产物.Koper等[27]利用原位DMES研究铂电极表面ENO3RR机理(图3a~图3c),对比发现,在一定电位范围,铂电极表界面处更容易发生硝酸盐还原反应并生成N2和N2O,但是产物严重依赖反应环境(H+浓度以及浓度),反应最终产物取决于吸附态*NO在电极表面的覆盖度(θ).除此之外,Liu等[28]借助原位DEMS技术,验证了ENO3RR产氨的路径(图3d).在一定电位范围,对Rh修饰Cu电极表面进行CV循环测试,发现了质荷比(m/z)为46,30,33,17的中间体物种,并将其归属于NO2,NO,NH2OH,NH3,结合理论计算阐述电极表面*H介导硝酸盐还原反应机理为吸附、加氢脱氧形成选择性关键中间体*NO(*NO3→*NO2→*NO)及后续持续加氢形成*NH3的过程(*NOH→*NH2OH→*NH2→*NH3).Zhang等[29]的研究结果显示,在Cu修饰的TiO2电极表面(图3e),检测到m/z=30,33,17的挥发性物质,将其归属于NO,NH2OH,NH3,从而推导出上述类似的反应机理.研究结果表明,在CoP自支撑电极表面存在活性氢的情况下(图3f),通过原位DEMS证明还原反应可选择性、有效地生成*NO关键中间体,*NO可进一步快速转化为NH3[30].对比发现,反应中没有m/z=28的N2存在,仅在高电位下出现副产物H2,说明催化剂具有较高的选择性.
电化学原位电子自旋共振表征技术通常称为电子自旋共振(electron spin resonance,ESR)光谱或电子顺磁共振(electron paramagnetic resonance,EPR)光谱,被广泛用于研究涉及自由基或过渡金属离子的反应,主要提供有关电子结构、自旋态及局部环境的详细信息.对于ENO3RR,EPR技术可快速捕获氢自由基,研究反应机理是否符合氢介导硝酸盐还原反应路径.Li等[33]制备出具有一定应力的Ru纳米团簇,为验证氢自由基(·H)对ENO3RR的动力学促进作用,对具有特定应力值的Ru-ST-12催化剂进行研究(图5a~图5b).对比发现,随着电解质KNO3溶液浓度从0增加到1 mol/L, 5,5-二甲基-1-吡咯啉-N-氧化物捕获剂(DMPO)检测到DMPO-H特征峰的强度逐渐减弱,说明·H直接参与了硝酸盐还原反应过程.再将DMPO捕获剂直接加入反应电解液,以验证反应过程中·H被DMPO及时捕获并直接影响硝酸盐还原反应中间体的加氢过程.实验结果显示,加入DMPO后,Ru-ST-12,Ru-ST-5的产氨电流密度分别大幅度下降至10.5,8.1 mA/cm2,分别降低了91.80%,84.13%.这表明·H在硝酸盐还原反应中发挥了关键作用.Chu等将亚纳米团簇RuO x 铆定在Pd金属烯(RuO x /Pd)界面,利用原位ESR技术探究氢介导硝酸盐还原反应的机理[34].实验结果显示,在没有加入的电解环境中(图5d),纯Pd金属具有更强的DMPO-H信号,表明金属Pd表面更容易发生解离水分子反应并生成·H.而在电解环境中加入(图5c),金属Pd界面的DMPO-H信号略微减弱,而在RuO x /Pd,RuO x /G界面无法检测到DMPO-H信号,说明金属Pd表面上·H不易被消耗,而RuO x 活性位点则能迅速消耗·H,进而促进了ENO3RR中的氢化反应.
在不同浓度NO3-下,对催化剂RuO x /Pd,Pd,RuO x /G反应后的电解液进行EPR测试(图5e~图5g).根据测试结果,进行催化剂氢化能力(cH)的量化对比实验,其中,cH定义为EPR信号强度衰减幅度与反应时间和NO3-浓度的比值(图5h).测试得到RuO x /Pd的cH=78.1,分别是纯Pd金属和RuO x /G的7.6,2.7倍,进一步验证了RuO x /Pd在ENO3RR中有较强的氢化能力.
XUHui, MAYuanyuan, CHENJun, et al. Electrocatalytic reduction of nitrate-a step towards a sustainable nitrogen cycle [J]. Chemical Society Reviews, 2022, 51(7): 2710-2758.
[2]
WANGYuting, WANGChanghong, LIMengyang, et al. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges [J]. Chemical Society Reviews, 2021, 50(12): 6720-6733.
[3]
XIONGYuecheng, WANGYunhao, ZHOUJingwen, et al. Electrochemical nitrate reduction: Ammonia synthesis and the beyond [J]. Advanced Materials,2024,36(17):e2304021.DOI:10.1002/adma.202304021 .
[4]
BARRABÉSN, SÁJ. Catalytic nitrate removal from water, past, present and future perspectives [J]. Applied Catalysis B: Environmental, 2011, 104: 1-5.
[5]
MARTÍNEZJ, ORTIZA, ORTIZI. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates [J]. Applied Catalysis B: Environmental, 2017, 207: 42-59.
[6]
WUXuanhao, NAZEMIM, GUPTAS, et al. Contrasting capability of single atom palladium for thermocatalytic versus electrocatalytic nitrate reduction reaction [J]. ACS Catalysis, 2023, 13(10): 6804-6812.
[7]
CHENFengyang, WUZhenyu, GUPTAS, et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst [J]. Nature Nanotechnology,2022,17(7):759-767.
[8]
CHENGaofeng, YUANYifei, JIANGHaifeng, et al. Electrochemical reduction of nitrate to ammonia via direct eightelectron transfer using a copper-molecular solid catalyst [J].Nature Energy,2020,5(8):605-613.
[9]
LIUKui, LIHongmei, XIEMinghao, et al. Thermally enhanced relay electrocatalysis of nitrate-to-ammonia reduction over single-atom-alloy oxides [J]. Journal of the American Chemical Society, 2024, 146(11): 7779-7790.
[10]
ZHANGXi, WANGYuting, LIUCuibo, et al. Recent advances in non-noble metal electrocatalysts for nitrate reduction [J]. Chemical Engineering Journal, 2021,43:126269. DOI: 10.1016/j.cej.2020.126269 .
[11]
YANGXiaoxuan, MUKHERJEES, O’CARROLLT, et al. Achievements, challenges, and perspectives on nitrogen electrochemistry for carbon-neutral energy technologies [J]. Angewandte Chemie International Edition,2023,38:101227.DOI:10.1002/anie. 202215938 .
[12]
CHENDong, YINDi, ZHANGShaoce, et al. Nitrate electroreduction: recent development in mechanistic understanding and electrocatalyst design [J].Materials Today Energy,2024,44:101610.DOI:10.1016/j.mtener.2024.101610 .
LIUDi, QIAOLulu, PENGShuyang, et al. Recent advances in electrocatalysts for efficient nitrate reduction to ammonia [J]. Advanced Functional Materials,2023,33(43):2303480.DOI:10.1002/adfm.202303480 .
[17]
LILaiquan, XULinyuan, WANGHanyun, et al. Electrocatalytic nitrogen cycle: Mechanism, materials, and momentum [J]. Energy & Environmental Science, 2024, 17(23): 9027-9050.
[18]
WANGYuting, YUYifu, JIARanran, et al. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization [J]. National Science Review, 2019, 6(4): 730-738.
[19]
TOKAZHANOVG, RAMAZANOVAE, HAMIDS, et al. Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: A review [J]. Chemical Engineering Journal,2020,384:123252.DOI:10.1016/j.cej.2019.123252 .
[20]
ZHANGHaoran, WANGHaijian, CAOXiqian, et al. Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion [J]. Advanced Materials,2024,33(16):2312746. DOI:10.1002/adma. 202312746 .
[21]
BAILichen, FRANCOF, TIMOSHENKOJ, et al. Electrocatalytic nitrate and nitrite reduction toward ammonia using Cu2O nanocubes: Active sSpecies and reaction mechanisms [J]. Journal of the American Chemical Society, 2024, 146(14): 9665-9678.
[22]
YUYongzhi, CHENGYu, CHENGSi, et al. Advanced ruthenium-based electrocatalysts for NO x reduction to ammonia [J]. Advanced Materials,2024,37(5):2412363.DOI:10.1002/adma.202412363 .
[23]
ZHANGShinan, GAOPeng, LIUQianyu, et al. Ampere-level reduction of pure nitrate by electron-deficient Ru with K+ ions repelling effect [J]. Nature Communications,2024,15:100877.DOI:10.1038/ s41467-024-55230-w .
[24]
NIUHuan, ZHANGZ, WANGX, et al.Theoretical insights into the mechanism of selectivenitrate-to-ammonia electroreduction on single-atom catalysts[J]. Advanced Functional Materials, 2020,31(11):2008533. DOI:10.1002/adfm.202008533 .
[25]
ANASTASIADOUD, VAN BEEKY, HENSENE J M, et al. Ammonia electrocatalytic synthesis from nitrate [J]. Electrochemical Science Advances, 2022,3(5):e2100220. DOI:10.1002/elsa.202100220 .
[26]
HUANGYanmei, HECaihong, CHENGChuanqi, et al. Pulsed electroreduction of low-concentration nitrate to ammonia [J]. Nature Communications, 2023,14:7368.DOI:10.1038/s41467-023-43179-1 .
[27]
DEGROOTM T, KOPERM T M. The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum [J]. Journal of Electroanalytical Chemistry, 2004, 562(1): 81-94.
[28]
LIUHuimin, LANGXiuyao, ZHUChao, et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts [J]. Angewandte Chemie International Edition,2022,61(23):e202202556.DOI:10.1002/anie.202202556 .
[29]
ZHANGXi, WANGChanghong, GUOYamei, et al. Cu clusters/TiO2-x with abundant oxygen vacancies for enhanced electrocatalytic nitrate reduction to ammonia [J]. Journal of Materials Chemistry A, 2022, 10(12): 6448-6453.
[30]
FANKui, XIEWenfu, LIJinze, et al. Active hydrogen boosts electrochemical nitrate reduction to ammonia [J]. Nature Communications, 2022,13:7958. DOI:10.1038/s41467-022-35664-w .
[31]
BAES E, STEWARTK L, GEWIRTHA A.Nitrate adsorption and reduction on Cu(100) in acidic solution [J]. Journal of the American Chemical Society, 2007,129(33): 10171-10180.
[32]
FANGJiayi, ZHENGQizheng, LOUYaoyin, et al. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature [J]. Nature Communications,2022,13:7899.DOI:10.1038/s41467-022-35533-6 .
[33]
LIJie, ZHANGuangming, YANGJianhua, et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters [J]. Journal of the American Chemical Society, 2020, 142(15): 7036-7046.
[34]
LIXiaotian, SHENPeng, LIXingchuan, et al. Sub-nm RuO x clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia [J]. ACS Nano, 2023, 17(2): 1081-1090.
[35]
LIJie, ZHANGuangming, YANGJianhua, et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters [J]. Journal of the American Chemical Society, 2020, 142(15): 7036-7046.
[36]
WANGYuhang, XUAoni, WANGZiyun, et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption [J]. Journal of the American Chemical Society, 2020, 142(12): 5702-5708.
[37]
LIUJinxun, RICHARDSD, SINGHN, et al. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals [J]. ACS Catalysis, 2019, 9(8): 7052-7064.
[38]
ZHUXiaojuan, GUOQishui, SUNYafei, et al. Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity [J]. Nature Communications, 2019,10:1428. DOI:10.1038/s41467-019-09421-5 .
[39]
SUNShubin, ZHANGYudi, SHIXin, et al. From charge to spin: An in-depth exploration of electron transfer in energy electrocatalysis [J]. Advanced Materials,2024,36(37):2312524.DOI:10.1002/adma.202312524 .
[40]
ZHANGNing, SHANGJian, DENGXi, et al. Governing interlayer strain in bismuth nanocrystals for efficient ammonia electrosynthesis from nitrate reduction [J]. ACS Nano, 2022, 16(3): 4795-4804.
[41]
XUYou, WANGMingzhen, RENKaili, et al. Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation [J]. Journal of Materials Chemistry A, 2021, 9(30): 16411-16417.
[42]
HUTao, WANGChanghong, WANGMengting, et al. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts [J]. ACS Catalysis, 2021, 11(23): 14417-14427.
[43]
LIULichen, CORMAA. Bimetallic sites for catalysis: From binuclear metal sites to bimetallic nanoclusters and nanoparticles [J]. Chemical Reviews, 2023, 123(8): 4855-4933.
[44]
LEWISR J, UEURAK, LIUXi, et al. Highly efficient catalytic production of oximes from ketones using in situ-generated H2O2 [J]. Science, 2022, 376(6593): 615-620.
[45]
YANGYuanyuan, HUCejun, SHANJieqing, et al. Electrocatalytically activating and reducing N2 molecule by tuning activity of local hydrogen radical [J]. Angewandte Chemie International Edition, 2023,62(20)e202300989. DOI:10.1002/anie.202300989 .
[46]
ZHANGJiankang, GAOZhe, WANGSen, et al. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction [J]. Nature Communications,2019,10(1):4166.DOI:10.1038/s41467-019-11970-8 .
[47]
LIUMing, LINa, CAOShoufu, et al. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis [J]. Advanced Materials, 2022,34(7):2107421.DOI:10.1002/adma.202107421 .
[48]
ZHANGShuo, WUJianghua, ZHENGMengting, et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia [J]. Nature Communications,2023,14:3634.DOI:10.1038/s41467-023-39366-9 .
[49]
ZHAOXinying, JIANGYuzhuo, WANGMengfan, et al. Optimizing intermediate adsorption via heteroatom ensemble effect over RuFe bimetallic alloy for enhanced nitrate electroreduction to ammonia [J].Advanced Energy Materials,2023,13(31):2301409.DOI:10.1002/aenm.202301409 .
[50]
SUNWuji, JIHaoqing, LILanxin, et al. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia [J]. Angewandte Chemie International Edition, 2021, 60(42): 22933-22939.