1.Engineering Research Center of Ministry of Education for CO2 Emission Reduction and Resource Utilization, School of Environment and Resources, Shanxi University, Taiyuan 030006, China
2.Shanxi Stone Age New Materials Technology Co. , Ltd, Lüliang 033000, China
In this paper, the anti-sintering absorbent was prepared by using carbide slag as calcium source, citric acid as modifier, and aluminum nitrate as dopant. The materials were characterized by X-ray diffraction, nitrogen adsorption and scanning electron microscopy. The cyclic adsorption properties of CO2 were tested by thermogravimetric analyzer. The results show that compared with p-CS and SG-CS adsorbents, CS90A10 adsorbent doped with a mass fraction of 10% Al can observe obvious Ca3Al2O6 diffraction peak, and have more mesoporous structure, larger specific surface area (9.59 m2/g) and pore volume (0.017 m3/g). Due to the presence of a large amount of highly stable inert skeleton component Ca3Al2O6 in the accumulated granules of CaO, the CS90A10 adsorbent exhibits excellent anti-sintering ability. After 30 long cycles, the microscopic morphology and pore structure of the adsorbent remained basically unchanged, and the CO2 adsorption capacity only decreased by 0.2 g/g compared to the initial cycle, still reaching 0.33 g/g. The carbonation conversion rate was 54.97%, showing high structural and adsorption stability.
HUS F, GUOY T. The Three-dimensional Value Dimension of Xi Jinping's Important Discussion on the Realization of Carbon Peak and Carbon Neutrality[J]. J China Univ Pet Ed Soc Sci, 2024, 40(02): 83-89. DOI: 10.13216/j.cnki.upcjess.2024.02.0010 .
CHENF, WANGS Y, YUH C, et al. Technological Innovation Paths of Coal Industry for Achieving Carbon Neutralization[J]. Int J Coal Sci, 2022, 47(4): 1452-1461. DOI: 10.13225/j.cnki.jccs.2022.0192 .
[5]
SOOX Y D, LEEJ J C, WUW Y, et al. Advancements in CO2 Capture by Absorption and Adsorption: a Comprehensive Review[J]. J CO2Util, 2024, 81: 102727. DOI: 10.1016/j.jcou.2024.102727 .
[6]
李红. 醇胺溶液捕集CO2过程的氧化、热降解研究[D]. 大连: 大连理工大学, 2021.
[7]
LIH. Study on Oxidation and Thermal Degradation of CO2 Capture by Alcoholamine Solution[D]. Dalian: Dalian University of Technology, 2021.
[8]
YOUNASM, SOHAILM, LEONGL K, et al. Feasibility of CO2 Adsorption by Solid Adsorbents: a Review on Low-temperature Systems[J]. Int J Environ Sci Technol, 2016, 13(7): 1839-1860. DOI: 10.1007/s13762-016-1008-1 .
[9]
WARMUZINSKIK, TANCZYKM, JASCHIKM. Experimental Study on the Capture of CO2 from Flue Gas Using Adsorption Combined with Membrane Separation[J]. Int J Greenh Gas Contr, 2015, 37: 182-190. DOI: 10.1016/j.ijggc.2015.03.009 .
[10]
WANGS P, YANS L, MAX B, et al. Recent Advances in Capture of Carbon Dioxide Using Alkali-metal-based Oxides[J]. Energy Environ Sci, 2011, 4(10): 3805-3819. DOI: 10.1039/C1EE01116B .
CAOC X, WANGB, CHENGH G, et al. The Status and Outlook of the Resource Utilization of Calcium Carbide Slag and Carbon Dioxide[J]. Ind Miner Process, 2022, 51(2): 1-9. DOI: 10.16283/j.cnki.hgkwyjg.2022.02.001 .
ZHAOL W, ZHUG Y, LIS P, et al. Research Progress on Characteristics and Comprehensive Utilization of Calcium Carbide Slag[J]. Clean Coal Technol, 2021, 27(03): 14-21. DOI: 10.13226/j.issn.1006-6772.21010601 .
[15]
GUB J, ZHANGY Q, PUDUKUDYM, et al. Study and Kinetic Analysis of Calcined Carbide Slag Doped with Silicon Nitride for Cyclic CO2 Capture[J]. Mater Chem Phys, 2021, 259: 124016. DOI: 10.1016/j.matchemphys.2020.124016 .
[16]
LIY J, SUNR Y, LIUC T, et al. CO2 Capture by Carbide Slag from Chlor-alkali Plant in Calcination/Carbonation Cycles[J]. Int J Greenh Gas Contr, 2012, 9: 117-123. DOI: 10.1016/j.ijggc.2012.03.012 .
[17]
ZHANGD F, LIS G, SONGW L, et al. Cyclic CO2 Capture Performance of Carbide Slag[J]. Energy Sources Part A Recovery Util Environ Eff, 2016, 38(4): 577-582. DOI: 10.1080/15567036.2013.820234 .
[18]
PRIETOC, COOPERP, FERNÁNDEZA I, et al. Review of Technology: Thermochemical Energy Storage for Concentrated Solar Power Plants[J]. Renew Sustain Energy Rev, 2016, 60: 909-929. DOI: 10.1016/j.rser.2015.12.364 .
[19]
ABREUM, TEIXEIRAP, FILIPER M, et al. Modeling the Deactivation of CaO-based Sorbents during Multiple Ca-looping Cycles for CO2 Post-combustion Capture[J]. Comput Chem Eng, 2020, 134: 106679. DOI: 10.1016/j.compchemeng.2019.106679 .
[20]
FUERTESA B, ALVAREZD, RUBIERAF, et al. Surface Area and Pore Size Changes during Sintering of Calcium Oxide Particles[J]. Chem Eng Commun, 1991, 109(1): 73-88. DOI: 10.1080/00986449108910974 .
[21]
ZHANGX G, BUTHIYAPPANA, JEWARATNAMJ, et al. Bifunctional Materials for Integrated CO2 Capture and Conversion: Review on Adsorbent and Catalyst Types, Recent Advances, and Challenges[J]. J Environ Chem Eng, 2024, 12(1): 111799. DOI: 10.1016/j.jece.2023.111799 .
[22]
GAOZ X, LIC H, YUANY N, et al. Utilizing Metal Oxide Enhancement for Efficient CO2 Capture and Conversion in Calcium-based Dual-function Materials[J]. J Energy Inst, 2024, 114: 101630. DOI: 10.1016/j.joei.2024.101630 .
[23]
LIUL, HONGD K, GUOX. A Study of Metals Promoted CaO-based CO2 Sorbents for High Temperature Application by Combining Experimental and DFT Calculations[J]. J CO 2 Util, 2017, 22: 155-163. DOI: 10.1016/j.jcou.2017.09.022 .
[24]
HANR, GAOJ H, WEIS Y, et al. Development of Highly Effective CaO@Al2O3 with Hierarchical Architecture CO2 Sorbents via a Scalable Limited-space Chemical Vapor Deposition Technique[J]. J Mater Chem A, 2018, 6(8): 3462-3470. DOI: 10.1039/C7TA09960F .
[25]
SUNH M, PARLETTC M A, ISAACSM A, et al. Development of Ca/KIT-6 Adsorbents for High Temperature CO2 Capture[J]. Fuel, 2019, 235: 1070-1076. DOI: 10.1016/j.fuel.2018.07.044 .
[26]
SUNJ, GUOY F, YANGY D, et al. Mode Investigation of CO2 Sorption Enhancement for Titanium Dioxide-decorated CaO-based Pellets[J]. Fuel, 2019, 256: 116009. DOI: 10.1016/j.fuel.2019.116009 .
[27]
WANGW Y, LIUW Q, SUNJ, et al. Reactivation of CaO-based Sorbents via Multi-acidification under N2 or Oxy-fuel (with and without SO2) Calcination Conditions[J]. Fuel, 2019, 244: 13-21. DOI: 10.1016/j.fuel.2019.01.115 .
[28]
HUY C, LIUW Q, SUNJ, et al. Structurally Improved CaO-based Sorbent by Organic Acids for High Temperature CO2 Capture[J]. Fuel, 2016, 167: 17-24. DOI: 10.1016/j.fuel.2015.11.048 .
[29]
GENGY Q, GUOY X, FANB, et al. Research Progress of Calcium-based Adsorbents for CO2 Capture and Anti-sintering Modification[J]. J Fuel Chem Technol, 2021, 49(7): 998-1013. DOI: 10.1016/s1872-5813(21)60040-3 .
[30]
LIY J, ZHAOC S, CHENH C, et al. Modified CaO-based Sorbent Looping Cycle for CO2 Mitigation[J]. Fuel, 2009, 88(4): 697-704. DOI: 10.1016/j.fuel.2008.09.018 .
[31]
SUNC Y, YANX Y, LIY J, et al. Coupled CO2 Capture and Thermochemical Heat Storage of CaO Derived from Calcium Acetate[J]. Greenhouse Gases, 2020, 10(5): 1027-1038. DOI: 10.1002/ghg.2021 .
[32]
LIZ H, WANGY, XUK, et al. Effect of Steam on CaO Regeneration, Carbonation and Hydration Reactions for CO2 Capture[J]. Fuel Process Technol, 2016, 151: 101-106. DOI: 10.1016/j.fuproc.2016.05.019 .
ZHANGY, GAOC Y, LID, et al. High Efficiency CO2 Composite Absorbent Prepared by Modification of Carbide Slag[J]. J Synth Cryst, 2024, 53(02): 344-354. DOI: 10.16553/j.cnki.issn1000-985x.20240004.009 .
SUNR Y, YEJ M, BIX L, et al. Kinetic Analysis on CO2 Capture Performance of Carbide Slag Modified by Propionic Acid[J]. Chem Ind Eng Prog, 2017, 36(6): 2325-2330. DOI: 10.16085/j.issn.1000-6613.2017.06.051 .
[37]
LIY J, SUM Y, XIEX, et al. CO2 Capture Performance of Synthetic Sorbent Prepared from Carbide Slag and Aluminum Nitrate Hydrate by Combustion Synthesis[J]. Appl Energy, 2015, 145: 60-68. DOI: 10.1016/j.apenergy.2015.01.061 .
FANW Q, PAND, HUANGL, et al. Research Progress in the Preparation of High Cycling Stability and High Temperature CO2 Capture Materials from Industrial Solid Waste and Cheap Ore[J]. Mater Rep, 2021, 35(17): 17090-17102. DOI: 10.11896/cldb.20080091 .