GYULASSYM, MCLERRANL. New Forms of QCD Matter Discovered at RHIC[J]. Nucl Phys A, 2005, 750(1): 30-63. DOI: 10.1016/j.nuclphysa.2004.10.034 .
[2]
COLLABORATIONS, ADAMSJ, AGGARWALM M, et al. Experimental and Theoretical Challenges in the Search for the Quark-gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions[J]. Nucl Phys A, 2005, 757(1-2): 102-183. DOI: 10.1016/j.nuclphysa.2005.03.085 .
[3]
KOSARZEWSKIL. Open and Hidden Heavy Flavor Measurements at RHIC[J]. EPJ Web Conf, 2022, 274: 05007. DOI: 10.1051/epjconf/202227405007 .
ACHARYAS, ADAMOVAD, ADLERA, et al. Accessing the Strong Interaction Between Λ Baryons and Charged Kaons with the Femtoscopy Technique at the LHC[J], Phys Lett B, 2023, 845: 138145. DOI: 10.1016/j.physletb.2023.138145 .
[6]
NEKRASOVM L. Pp Elastic Scattering at ISR and LHC Energies[J]. Phys Rev D, 2023, 108(3): 034028. DOI: 10.1103/physrevd.108.034028 .
[7]
CUNQUEIROL, SICKLESA M. Studying the QGP with Jets at the LHC and RHIC[J]. Prog Part Nucl Phys, 2022, 124: 103940. DOI: 10.1016/j.ppnp.2022.103940 .
[8]
ADAMJ, ADAMCZYL, ADAMSJ R, et al. Centrality and Transverse Momentum Dependence of D0-Meson Production at Mid-Rapidity in Au+Au Collisions at s N N = 200 GeV [J], Phys Rev C, 2019, 99(3): 034908. DOI: 10.1103/PhysRevC.99.034908 .
[9]
NASIMM. Measurements of DS±-meson Production in Au + Au Collisions at sNN=200 GeV in STAR[J]. Nucl Phys A, 2016, 956: 509-512. DOI: 10.1016/j.nuclphysa.2016.02.058 .
[10]
ADAMJ, ADAMCZYL, ADAMSJ R, et al. Observation of DS±/D0 Enhancement in Au+Au Collisions at s N N = 200 GeV[J]. Phys Rev Lett, 2021, 127(9): 092301. DOI: 10.1103/PhysRevLett.127.092301 .
[11]
WAQASM, LIB C. Kinetic Freeze-out Temperature and Transverse Flow Velocity in Au-Au Collisions at RHIC-BES Energies[J]. Adv High Energy Phys, 2020, 2020: 1-14. DOI: 10.1155/2020/1787183 .
[12]
MOTORNENKOA, STEINHEIMERJ, VOVCHENKOV, et al. Ambiguities in the Hadro-chemical Freeze-out of Au+Au Collisions at SIS18 Energies and How to Resolve Them[J]. Phys Lett B, 2021, 822: 136703. DOI: 10.1016/j.physletb.2021.136703 .
[13]
LIUH J, CHENGH G, FENGZ Q, Collective Flows of Clusters and Pions in Heavy-Ion Collisions at GeV Energies[J]. Phys Rev C, 2023, 108: 024614. DOI: 10.1103/PhysRevC.108.024614 .
[14]
PANC Y, ZHENGS H, YANGM M, et al. Nonthermal Distributions of Charmed Hadrons in Relativistic Heavy-ion Collisions[J]. Phys Rev C, 2023, 108(3): 034903. DOI: 10.1103/physrevc.108.034903 .
[15]
SINHAP, BAIRATHIV, GOPALK, et al. Effect of Nuclear Structure on Particle Production in Relativistic Heavy-ion Collisions Using a Multiphase Transport Model[J]. Phys Rev C, 2023, 108(2): 024911. DOI: 10.1103/physrevc.108.024911 .
[16]
TAOJ Q, WUW H, WANGM, et al. The Novel Scaling of Tsallis Parameters from the Transverse Momentum Spectra of Charged Particles in Heavy-ion Collisions[J]. Particles, 2022, 5(2): 146-156. DOI: 10.3390/particles5020013 .
[17]
GAOY, ZHENGH, ZHUL L, et al. Description of Charged Particle Pseudorapidity Distributions in Pb+Pb Collisions with Tsallis Thermodynamics[J]. Eur Phys J A, 2017, 53(10): 197. DOI: 10.1140/epja/i2017-12397-y .
[18]
PATRAN R, MOHANTYB, NAYAKT K. Centrality, Transverse Momentum and Collision Energy Dependence of the Tsallis Parameters in Relativistic Heavy-ion Collisions[J]. Eur Phys J Plus, 2021, 136(6): 702. DOI: 10.1140/epjp/s13360-021-01660-0 .
[19]
AJAZM, KARIM HAJ ISMAIL AAL, WAQASM, et al. Pseudorapidity Dependence of the Bulk Properties of Hadronic Medium in pp Collisions at 7 TeV[J]. Sci Rep, 2022, 12: 8142. DOI: 10.1038/s41598-022-11685-9 .
[20]
RATHR, KHUNTIAA, SAHOOR, et al. Event Multiplicity, Transverse Momentum and Energy Dependence of Charged Particle Production, and System Thermodynamics in pp Collisions at the Large Hadron Collider[J]. J Phys G: Nucl Part Phys, 2020, 47(5): 055111. DOI: 10.1088/1361-6471/ab783b .
[21]
RISTEAO, RISTEAC, JIPAA. Study of Strange Particle PT Spectra in Relativistic Heavy-ion Collisions with Blast-wave Model[J]. Int J Mod Phys E, 2022, 31(9): 2250090. DOI: 10.1142/s0218301322500902 .
[22]
CHENJ, DENGJ, TANGZ B, et al. Nonequilibrium Kinetic Freeze-out Properties in Relativistic Heavy Ion Collisions from Energies Employed at the RHIC Beam Energy Scan to those Available at the LHC[J]. Phys Rev C, 2021, 104(3): 034901. DOI: 10.1103/physrevc.104.034901 .
[23]
ADAMCZYKL, ADKINSJ K, AGAKISHIEVG, et al. Bulk Properties of the Medium Produced in Relativistic Heavy-ion Collisions from the Beam Energy Scan Program[J]. Phys Rev C, 2017, 96(4): 44904. DOI: 10.1103/PhysRevC.96.044904 .
[24]
RISTEAO, JIPAA, RISTEAC, et al. Study of the Freeze-out Process in Heavy Ion Collisions at Relativistic Energies[J]. J Phys: Conf Ser, 2013, 420: 012041. DOI: 10.1088/1742-6596/420/1/012041 .
[25]
GUJ B, LIC Y, WANGQ, et al. Collective Expansion in pp Collisions Using the Tsallis Statistics[J]. J Phys G: Nucl Part Phys, 2022, 49(11): 115101. DOI: 10.1088/1361-6471/ac9074 .
[26]
WAQASM, PENGG X, LIUF H, et al. Particle Species and Energy Dependencies of Freeze-out Parameters in High-energy Proton-proton Collisions[J]. Eur Phys J Plus, 2022, 137(9): 1041. DOI: 10.1140/epjp/s13360-022-03189-2 .
[27]
CHEG R, GUJ B, ZHANGW C, et al. Identified Particle Spectra in Pb-Pb, Xe-Xe and p-Pb Collisions with the Tsallis Blast-wave Model[J]. J Phys G: Nucl Part Phys, 2021, 48(9): 095103. DOI: 10.1088/1361-6471/ac09dc .