In this paper, we considered a class of predator-prey model with the dispersal and the population loss during the dispersal of the prey. We discussed the effect of the dispersal rate, dispersal delay and population loss on the stability of the symmetric coexistence equilibrium by using stability theory and eigenvalue theory. We obtained that the dispersal of the prey did not affect the stability of the symmetric coexistence equilibrium, but it can induce stability switches under certain conditions, leading that an otherwise unstable symmetric coexistence equilibrium can be stabilized over a finite number of intervals. Finally, numerical simulations are presented to demonstrate the correctness of our conclusions. The number of stable intervals under the satisfied conditions and the corresponding numerical solutions of the model are given. In addition, we simulated the effect of dispersal and population loss on the existence and stability of the symmetric coexistence equilibrium by Matlab.
MURRAYJ D. Mathematical Biology[M]. New York: Springer, 2002.
[2]
LOTKAA J. Elements of Physical Biology[M]. Baltimore: Williams and Wilkins, 1926.
[3]
VOLTERRAV, BRELOTM. Leçons sur la théorie mathématique de la lutte pour la vie[M]. Paris: Gauthier-Villars et cie., 1931.
[4]
AZIZ-ALAOUIM A, DAHER OKIYEM. Boundedness and Global Stability for a Predator-prey Model with Modified Leslie-Gower and Holling-type II Schemes[J]. Appl Math Lett, 2003, 16(7): 1069-1075. DOI: 10.1016/s0893-9659(03)90096-6 .
[5]
KART K, GHORAIA. Dynamic Behaviour of a Delayed Predator-Prey Model with Harvesting[J]. Appl Math Comput, 2011, 217(22): 9085-9104. DOI: 10.1016/j.amc.2011.03.126 .
[6]
SHUH Y, HUX, WANGL, et al. Delay Induced Stability Switch, Multitype Bistability and Chaos in an Intraguild Predation Model[J]. J Math Biol, 2015, 71(6/7): 1269-1298. DOI: 10.1007/s00285-015-0857-4 .
[7]
LIJ Q, ZHUX, LINX L, et al. Impact of Cannibalism on Dynamics of a Structured Predator-Prey System[J]. Appl Math Model, 2020, 78: 1-19. DOI: 10.1016/j.apm.2019.09.022 .
[8]
BAID Y, ZHENGJ L, KANGY. Global Dynamics of a Predator-prey Model with a Smith Growth Function and the Additive Predation in Prey[J]. Discrete Contin Dyn Syst B, 2024, 29(4): 1923-1960. DOI: 10.3934/dcdsb.2023161 .
[9]
LEVINS A. Dispersion and Population Interactions[J]. Am Nat, 1974, 108(960): 207-228. DOI: 10.1086/282900 .
[10]
HOLTR D. Population Dynamics in Two-patch Environments: Some Anomalous Consequences of an Optimal Habitat Distribution[J]. Theor Popul Biol, 1985, 28(2): 181-208. DOI: 10.1016/0040-5809(85)90027-9 .
[11]
TAKEUCHIY. Global dynamical properties of Lotka-Volterra systems[M]. Singapore: World Scientific, 1996.
[12]
KUANGY, TAKEUCHIY. Predator-prey Dynamics in Models of Prey Dispersal in Two-patch Environments[J]. Math Biosci, 1994, 120(1): 77-98. DOI: 10.1016/0025-5564(94)90038-8 .
[13]
SAHAS, SAMANTAG P. Influence of Dispersal and Strong Allee Effect on a Two-patch Predator-Prey Model[J]. Int J Dyn Contr, 2019, 7(4): 1321-1349. DOI: 10.1007/s40435-018-0490-3 .
[14]
ZHANGY X, LUTSCHERF, GUICHARDF. The Effect of Predator Avoidance and Travel Time Delay on the Stability of Predator-prey Metacommunities[J]. Theor Ecol, 2015, 8(3): 273-283. DOI: 10.1007/s12080-015-0269-5 .
[15]
MAIA L, SUNG W, ZHANGF Q, et al. The Joint Impacts of Dispersal Delay and Dispersal Patterns on the Stability of Predator-prey Metacommunities[J]. J Theor Biol, 2019, 462: 455-465. DOI: 10.1016/j.jtbi.2018.11.035 .
[16]
SUNG W, MAIA L. Stability Switches in a Ring-structured Predator-Prey Metapopulation Model with Dispersal Delay[J]. Adv Differ Equ, 2020, 2020(1): 196. DOI: 10.1186/s13662-020-02635-8 .
[17]
ZHANGC M, SHIL. Graph-theoretic Method on the Periodicity of Coupled Predator-Prey Systems with Infinite Delays on a Dispersal Network[J]. Phys A Stat Mech Appl, 2021, 561: 125255. DOI: 10.1016/j.physa.2020.125255 .
[18]
JANSENV A. The Dynamics of Two Diffusively Coupled Predator-prey Populations[J]. Theor Popul Biol, 2001, 59(2): 119-131. DOI: 10.1006/tpbi.2000.1506 .
[19]
HUANGY X, DIEKMANNO. Predator Migration in Response to Prey Density: What are the Consequences?[J]. J Math Biol, 2001, 43(6): 561-581. DOI: 10.1007/s002850100107 .
[20]
GHOSHS, BHATTACHARYYAS. A Two-patch Prey-predator Model with Food-gathering Activity[J]. J Appl Math Comput, 2011, 37(1): 497-521. DOI: 10.1007/s12190-010-0446-z .
[21]
WANGX Y, ZOUX F. On a Two-patch Predator-prey Model with Adaptive Habitancy of Predators[J]. Discrete Contin Dyn Syst Ser B, 2016, 21(2): 677-697. DOI: 10.3934/dcdsb.2016.21.677 .
[22]
KANGY, SASMALS K, MESSANK. A Two-patch Prey-predator Model with Predator Dispersal Driven by the Predation Strength[J]. Math Biosci Eng, 2017, 14(4): 843-880. DOI: 10.3934/mbe.2017046 .
[23]
MAIA L, SUNG W, WANGL. Impacts of the Dispersal Delay on the Stability of the Coexistence Equilibrium of a Two-patch Predator-prey Model with Random Predator Dispersal[J]. Bull Math Biol, 2019, 81(5): 1337-1351. DOI: 10.1007/s11538-018-00568-8 .
[24]
HUANGR, WANGY S, WUH. Population Abundance in Predator-prey Systems with Predator's Dispersal between Two Patches[J]. Theor Popul Biol, 2020, 135: 1-8. DOI: 10.1016/j.tpb.2020.06.002 .
[25]
MCHICHR, AUGERP, POGGIALEJ C. Effect of Predator Density Dependent Dispersal of Prey on Stability of a Predator-prey System[J]. Math Biosci, 2007, 206(2): 343-356. DOI: 10.1016/j.mbs.2005.11.005 .
[26]
ABDLLAOUI AEL, AUGERP, KOOIB W, et al. Effects of Density-dependent Migrations on Stability of a Two-patch Predator-prey Model[J]. Math Biosci, 2007, 210(1): 335-354. DOI: 10.1016/j.mbs.2007.03.002 .
[27]
WANGW D, TAKEUCHIY. Adaptation of Prey and Predators between Patches[J]. J Theor Biol, 2009, 258(4): 603-613. DOI: 10.1016/j.jtbi.2009.02.014 .
[28]
FENGW, ROCKB, HINSONJ. On a New Model of Two-patch Predator-prey System with Migration of both Species[J]. J Appl Anal Comput, 2011, 1(2): 193-203. DOI: 10.11948/2011013 .
[29]
SUNG W, MAIA L. Stability Analysis of a Two-patch Predator-Prey Model with Two Dispersal Delays[J]. Adv Differ Equ, 2018, 2018(1): 373. DOI: 10.1186/s13662-018-1833-2 .
[30]
LUX J, CHENY M, LIUS Q. A Stage-structured Predator-prey Model in a Patchy Environment[J]. Complexity, 2020, 2020: 6028019. DOI: 10.1155/2020/6028019 .
[31]
MAIA L, SUNG W, WANGL. Effects of Dispersal on Competitive Coexistence in a Two-patch Competition Model[J]. Math Methods Appl Sciences, 2023, 46(9): 10527-10539. DOI: 10.1002/mma.9137 .
[32]
KUANGY. Delay Differential Equations: With Applications in Population Dynamics[M]. Boston: Academic Press, 1993
[33]
COOKEK L, GROSSMANZ. Discrete Delay, Distributed Delay and Stability Switches[J]. J Math Anal Appl, 1982, 86(2): 592-627. DOI: 10.1016/0022-247x(82)90243-8 .
[34]
HALEJ K, LUNELS M V. Introduction to Functional Differential Equations[M]. New York, NY: Springer, 1993. DOI: 10.1007/978-1-4612-4342-7 .