School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China
Show less
文章历史+
Received
Accepted
Published
2024-01-07
2024-02-27
Issue Date
2025-10-30
PDF (3141K)
摘要
针对基于图卷积神经网络的多视图聚类算法中视图嵌入表示存在的两个问题: 跨视图特征表示一致性不足、跨视图簇划分一致性不足,本文提出了一种跨视图一致性表示的多视图属性图聚类算法(Multi-view Attribute Graph Clustering Algorithm with Cross-view Consistent Representations, CCRAGC)。该算法通过约束视图间的节点相似度矩阵逼近单位矩阵来加强视图嵌入表示之间的特征级一致性;同时,把视图嵌入表示映射到聚类级子空间,使子空间中的软标签矩阵尽可能相似,以此来加强视图间簇划分的一致性。研究结果表明,CCRAGC对于计算机协会(Association for Computing Machinery,ACM)、dblp计算机科学书目(dblp computer science bibliography,DBLP)、互联网电影资料库(Internet Movie Database,IMDB)三个广泛使用的数据集都有效,且准确率(Accuracy,Acc)相对于性能最优的基准算法分别提高了1.21%、0.37%、5.74%。
Abstract
Aiming at the two problems of view embedding representations in GCN-based multi-view clustering algorithms: insufficient cross-view feature consistency and insufficient cross-view clustering consistency, this paper proposes a multi-view attribute graph clustering algorithm (CCRAGC) with cross-view consistent representations. The algorithm strengthens the feature-level consistency between view-embedded representations by calculating the node similarity matrix between views, and then constraining the node similarity matrix to approximate the unit matrix; at the same time, it maps the view-embedded representations to the clustering-level subspaces, so that the soft-label matrices in the subspaces are as similar as possible to a way of enhancing the learning of view-embedded representations and correlation of clustering tasks. The results of the study show that CCRAGC is effective for three widely used datasets, namely ACM, DBLP, and IMDB, and Acc improves by 1.21%, 0.37%, and 5.74%, respectively, with respect to the benchmark algorithm with the best performance.
在本节中,在计算机协会(Association for Computing Machinery,ACM)、dblp计算机科学书目(dblp computer science bibliography,DBLP)和互联网电影资料库(Internet Movie Database,IMDB)三个多视图属性图数据集上通过对比数种经典算法以验证所提出算法的有效性。同时,通过可视化任务、消融实验和参数敏感性分析等实验进一步体现算法的优异性。
XIEJ Y, GIRSHICKR, FARHADIA. Unsupervised Deep Embedding for Clustering Analysis[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48. New York: ACM, 2016: 478-487. DOI: 10.5555/3045390.3045442 .
[2]
GUOX F, GAOL, LIUX W, et al. Improved Deep Embedded Clustering with Local Structure Preservation[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. New York: ACM, 2017: 1753-1759. DOI: 10.5555/3172077.3172131 .
[3]
LIZ Y, WANGQ Q, TAOZ Q, et al. Deep Adversarial Multi-view Clustering Network[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York: ACM, 2019: 2952-2958. DOI: 10.5555/3367243.3367449 .
[4]
XUJ, RENY Z, LIG F, et al. Deep Embedded Multi-view Clustering with Collaborative Training[J]. Inform Sciences, 2021, 573: 279-290. DOI: 10.1016/j.ins.2020.12.073 .
[5]
XUJ, TANGH Y, RENY Z, et al. Multi-level Feature Learning for Contrastive Multi-view Clustering[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2022: 16030-16039. DOI: 10.1109/CVPR52688.2022.01558 .
[6]
TANGX L, TANGX, WANGW L, et al. Deep Multi-view Sparse Subspace Clustering[C]//Proceedings of the 2018 VII International Conference on Network, Communication and Computing. New York: ACM, 2018: 115-119. DOI: 10.1145/3301326.3301391 .
[7]
ANDREWG, ARORAR, BILMESJ, et al. Deep Canonical Correlation Analysis[J]. 30th Int Conf Mach Learn ICML2013, 2013(PART 3): 2284-2292.
[8]
ZHUP F, HUIB Y, ZHANGC Q, et al. Multi-view Deep Subspace Clustering Networks[J]. IEEE Trans Cybern, 2024,54(7):4280-4293. DOI: 10.1109/TCYB.2024.3372309 .
[9]
WANGJ, WUB, RENZ W, et al. Multi-scale Deep Multi-view Subspace Clustering with Self-weighting Fusion and Structure Preserving[J]. Expert Syst Appl, 2023, 213: 119031. DOI: 10.1016/j.eswa.2022.119031 .
[10]
LIUJ, CAOF Y, JINGX C, et al. Deep Multi-view Graph Clustering Network with Weighting Mechanism and Collaborative Training[J]. Expert Syst Appl, 2024, 236: 121298. DOI: 10.1016/j.eswa.2023.121298 .
[11]
CHENGJ F, WANGQ Q, TAOZ Q, et al. Multi-view Attribute Graph Convolution Networks for Clustering[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. New York: ACM, 2021: 2973-2979. DOI: 10.5555/3491440.3491851 .
[12]
FANS H, WANGX, SHIC, et al. One2Multi Graph Autoencoder for Multi-view Graph Clustering[C]//Proceedings of The Web Conference 2020. New York: ACM, 2020: 3070-3076. DOI: 10.1145/3366423.3380079 .
[13]
WANGY M, CHANGD X, FUZ Q, et al. Consistent Multiple Graph Embedding for Multi-view Clustering[J]. IEEE Trans Multimed, 1008, 25: 1008-1018. DOI: 10.1109/TMM.2021.3136098 .
[14]
BOD Y, WANGX, SHIC, et al. Structural Deep Clustering Network[C]//Proceedings of The Web Conference 2020. New York: ACM, 2020: 1400-1410. DOI: 10.1145/3366423.3380214 .
RAHMANM K, AGRAWALA, AZADA. MarkovGNN: Graph Neural Networks on Markov Diffusion[C]//Proceedings of the Web Conference 2022. New York: ACM, 2022: 1019-1029. DOI: 10.1145/3487553.3524713 .
[17]
KIPFT N, WELLINGM. Semi-supervised Classification with Graph Convolutional Networks[EB/OL]. (2016-09-09)[2025-01-07].
[18]
TANGJ, QUM, WANGM Z, et al. LINE: Large-scale Information Network Embedding[C]//Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 1067-1077. DOI: 10.1145/2736277.2741093 .
ZHANGH M, QIUL W, YIL L, et al. Scalable Multiplex Network Embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 3082-3088. DOI: 10.5555/3304889.3305089 .
[21]
LIUW Y, CHENP Y, YEUNGS, et al. Principled Multilayer Network Embedding[C]//2017 IEEE International Conference on Data Mining Workshops (ICDMW). New York: IEEE, 2017: 134-141. DOI: 10.1109/ICDMW.2017.23 .
[22]
XIAR K, PANY, DUL, et al. Robust Multi-view Spectral Clustering via Low-rank and Sparse Decomposition[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. New York: ACM, 2014: 2149-2155. DOI: 10.5555/2892753.2892850 .
[23]
NIEF P, LIJ, LIX L. Self-weighted Multiview Clustering with Multiple Graphs[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. New York: ACM, 2017: 2564-2570. DOI: 10.5555/3172077.3172245 .
[24]
LIANGJ Y, BAIL, DANGC Y, et al. The $K$-means-type Algorithms Versus Imbalanced Data Distributions[J]. IEEE Trans Fuzzy Syst, 2012, 20(4): 728-745. DOI: 10.1109/TFUZZ.2011.2182354 .
[25]
BOUYERA, ROGHANIH. LSMD: A Fast and Robust Local Community Detection Starting from Low Degree Nodes in Social Networks[J]. Future Gener Comput Syst, 2020, 113: 41-57. DOI: 10.1016/j.future.2020.07.011 .