1.School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Chongqing Municipal Key Laboratory of Computing Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
3.Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu 610500, China
Show less
文章历史+
Received
Accepted
Published
2023-12-01
2024-03-04
Issue Date
2026-01-28
PDF (3884K)
摘要
在地震勘探剩余静校正阶段,遗传算法处理低信噪比数据时容易受到噪声干扰,迅速陷入局部最优。本文提出一种基于概率统计的慢速扩展遗传算法(Slow Expansion Genetic Algorithm for Residual Static Correction,SEGA)。以动校正后的共中心点道集数据作为输入,通过地震道与混波模型道互相关,分别获取炮点与检波点的互相关矩阵,并利用所提出的转换函数获得静校正量概率矩阵;根据该概率矩阵的值,进行种群的初始化、交叉、变异;通过选择最优染色体更新叠加剖面,并利用慢速扩展相空间来重新确定校正量的上下界;重复如上步骤直至收敛。实验结果表明,SEGA在某山区收集的地震数据上能显著提高叠加剖面的成像质量,与最大叠加能量法和基准遗传算法相比,叠加能量分别提升了6.61%、5.55%。
Abstract
In the residual static correction phase of seismic exploration, the genetic algorithm is susceptible to noise interference when processing low signal-to-noise ratio data and quickly falls into a local optimum. This paper proposes a probabilistic statistics-based slow expansion genetic algorithm (SEGA). The common middle point gathers are used as input. The seismic traces and wave-mixing model traces are correlated with each other to obtain the cross-correlation matrices of the shot and receiver points, respectively. The probability matrices of the static correction are obtained by using the proposed transformation function. Based on the value of the probability matrix, the population is initialized, crossed over, and mutated. The stacked section is updated by selecting the optimal chromosome. The slow expansion of the phase space is used to redefine the upper and lower limits of the correction. The above steps are repeated until convergence achieved. The experimental results show the proposed method can significantly improve the imaging quality of stacked section on seismic data collected in a mountainous area. The stacked energy is improved by 6.61% and 5.55% compared with the maximum stacked energy method and genetic algorithm, respectively.
CUIQ H, SHANGX M, TENGH H, et al. Research on the Static Correction Method for the Loess and Gravel Area in Western Foothill Belt[J]. Oil Geophys Prospect, 2021, 56(2): 226-233. DOI: 10.13810/j.cnki.issn.1000-7210.2021.02.002 .
[3]
WIGGINSR A, LARNERK L, WISECUPR D. Residual Statics Analysis as a General Linear Inverse Problem[J]. GEOPHYSICS, 1976, 41(5): 922-938. DOI: 10.1190/1.1440672 .
[4]
ROTHMAND H. Automatic Estimation of Large Residual Statics Corrections[J]. GEOPHYSICS, 1986, 51(2): 332-346. DOI: 10.1190/1.1442092 .
CHENF, WANGY C, WANGH Q, et al. The Application of Monte Carlo Method to Residual Static Correction[J]. Geophys Geochem Explor, 2012, 36(4): 628-632. DOI: 10.11720/wtyht.2012.4.23 .
DIJ W, WANGY F, ZHANGZ E, et al. Application of Global Optimization-seeking Residual Static Corrections to The Giant Thick Loess Zone[C]//Proceedings of the 2022 Annual Meeting of the Petroleum Geophysical Society of China. Haikou: Chinese Petroleum Society, 2022: 685-688. DOI: 10.26914/c.cnkihy.2022.040114 .
PANS L, WUB, GAOL. The Improvements of Natural Cognation Exclusion Strategy for Genetic Algorithm and Its Application in Residual Static Correction[J]. Oil Geophys Prospect, 2010, 45(6): 802-806. DOI: 10.13810/j.cnki.issn.1000-7210.2010.06.007 .
HEC Q, WANGQ, ZHANGP, et al. The Application of Annealing Genetic Algorithms to Residual Statics Correction[J]. Geophys Geochem Explor, 2011, 35(6): 789-792.
ZHOUQ, CAOL Y, CHENA P. Residual Static Corrections with the Niche Genetic Algorithm Based on Poisson Disk Sampling[J]. Oil Geophys Prospect, 2018, 53(5): 896-902. DOI: 10.13810/j.cnki.issn.1000-7210.2018.05.002 .
[19]
WUM, PANS L, MINF. A Genetic Algorithm for Residual Static Correction[C]//2021 IEEE International Conference on Big Knowledge (ICBK). New York: IEEE, 2021: 1-7. DOI: 10.1109/ICKG52313.2021.00069 .
WUB, YINC, PANS L, et al. The Improvements on Maximum Energy Method Residual Static Correction[J]. Oil Geophys Prospect, 2010, 45(3): 350-354. DOI: 10.13810/j.cnki.issn.1000-7210.2010.03.007 .
[22]
SCHNEIDERW A. Developments in Seismic Data Processing and Analysis (1968-1970)[J]. GEOPHYSICS, 1971, 36(6): 1043-1073. DOI: 10.1190/1.1440232 .
ZHOUJ, HUAZ S. A Correlation Guided Genetic Algorithm and Its Application to Feature Selection[J]. Appl Soft Comput, 2022, 123: 108964. DOI: 10.1016/j.asoc.2022.108964 .
[26]
MUKHERJEEP, GARGH, PRADHANC, et al. Best Fit DNA-based Cryptographic Keys: The Genetic Algorithm Approach[J]. Sensors, 2022, 22(19): 7332. DOI: 10.3390/s22197332 .
[27]
ACAMPORAG, CHIATTOA, VITIELLOA. Genetic Algorithms as Classical Optimizer for the Quantum Approximate Optimization Algorithm[J]. Appl Soft Comput, 2023, 142: 110296. DOI: 10.1016/j.asoc.2023.110296 .
[28]
KUMIL, JEONGJ W. Optimization Model for Selecting Optimal Prefabricated Column Design Considering Environmental Impacts and Costs Using Genetic Algorithm[J]. J Clean Prod, 2023, 417: 137995. DOI: 10.1016/j.jclepro.2023.137995 .
[29]
RONENJ, CLAERBOUTJ F. Surface-consistent Residual Statics Estimation by Stack-power Maximization[J]. GEOPHYSICS, 1985, 50(12): 2759-2767. DOI: 10.1190/1.1441896 .