1.State Key Laboratory of Quantum Optics and Optical Quantum Devices, Institute of Optoelectronics, Shanxi University, Taiyuan 030006, China
2.Extreme Optics Collaborative Innovation Center, Taiyuan 030006, China
Show less
文章历史+
Received
Accepted
Published
2023-12-25
2024-03-20
Issue Date
2025-10-09
PDF (1619K)
摘要
双层莫尔过渡金属硫族化合物(Transition metal dichalcogenides, TMDCs)可形成周期性的莫尔超晶格,是研究电子关联态和新型激子态的重要研究平台。具有II型能带匹配的转角TMDCs异质结形成的莫尔层间激子,其自旋-能谷自由度不仅能被静电感应、应力、衬底等因素调控,更受到莫尔势的深度调制,共同促进了高度可调谷电子学器件的研究。本文制备了分别位于铂(Pt)薄膜衬底和二氧化硅(SiO2)衬底的H堆叠(60°转角)二硫化钨/二硒化钨(WS2/WSe2)异质结器件。通过低温下对两种衬底的莫尔异质结进行光致发光(Photoluminescence,PL)光谱、光致发光激发(Photoluminescence excitation,PLE)光谱以及谷极化的测试,发现在电荷掺杂可以忽略的情况下,层间激子在Pt衬底上更加局域化,并且其谷极化随激子浓度增加更容易饱和。本项工作中,Pt薄膜作为金属接触的同时也是一种人工引入的缺陷,其对异质结谷极化的影响为以莫尔层间激子为基础的光电子学应用提供了参考。
Abstract
Two-dimensional transition metal dichalcogenides (TMDCs) can form periodic moiré superlattice, offering an invaluable platform for the investigation of electron correlation states and novel exciton states. Moiré interlayer excitons in TMDCs heterostructures with type-II band alignment exhibit spin-valley degrees of freedom that are manipulated not only by electrostatic field, strain, and substrate, but also by the modulation of moiré potential, facilitating the exploration of highly tunable valleytronic devices. In this paper, a H-stacked (60° twisted) tungsten disulfide/tungsten diselenide (WS2/WSe2) heterostructure was prepared on platinum (Pt) thin film substrate and silicon dioxide (SiO2) substrate, separately. By performing photoluminescence (PL) spectroscopy, photoluminescence excitation (PLE) spectroscopy and valley polarization measurements on both substrates at low temperatures, it was observed that, in the absence of significant charge doping, the interlayer excitons are more localized on the Pt substrate. Additionally, the valley polarization is more easily saturated with increasing exciton concentration on Pt substrate. Pt thin films, serving dual roles as metal contacts and artificially introduced defects, are shown to impact the valley polarization of the interlayer excitons. Our work provides insights for optoelectronics applications based on Moiré interlayer excitons.
在单层TMDCs材料中,空间反演对称性破缺和自旋-轨道相互作用使得布里渊区边沿的K+能谷与K能谷不同但能量简并[28-29],能谷-自旋的锁定形成了谷依赖的光学选择定则,对荧光发射的极化率测量为激子谷极化提供了有效的探测方式[30-33]。与单层TMDCs晶体不同,转角双层TMDCs中层间激子的谷极化则会受到堆叠方式和莫尔周期势场的强烈影响,产生显著的差异[34-38]。对于R堆叠(0°转角)和H堆叠(60°转角)WS2/WSe2异质结而言,当采用圆偏光激发时,R堆叠下电中性和电子端掺杂时得到的圆偏振度(Degree of circular polarization,DOCP)大于0,H堆叠下不管处于何种电荷掺杂,测量得到的DOCP均小于0。即便对于相同的R堆叠WS2/WSe2异质结,在特定的激发能量下,空间调制的莫尔势仍然可以将层间激子局域在莫尔晶胞的不同位置,展现出完全相反的光学选择定则[39]。
LUICANA, LIG H, REINAA, et al. Single-layer Behavior and Its Breakdown in Twisted Graphene Layers[J]. Phys Rev Lett, 2011, 106(12): 126802. DOI: 10.1103/PhysRevLett.106.126802 .
[2]
YUH Y, LIUG B, TANGJ J, et al. Moiré Excitons: From Programmable Quantum Emitter Arrays to Spin-orbit-coupled Artificial Lattices[J]. Sci Adv, 2017, 3(11): e1701696. DOI: 10.1126/sciadv.1701696 .
[3]
WANGL, SHIHE M, GHIOTTOA, et al. Correlated Electronic Phases in Twisted Bilayer Transition Metal Dichalcogenides[J]. Nat Mater, 2020, 19(8): 861-866. DOI: 10.1038/s41563-020-0708-6 .
[4]
HUANGX, WANGT M, MIAOS N, et al. Correlated Insulating States at Fractional Fillings of the WS2/WSe2 Moiré Lattice[J]. Nat Phys, 2021, 17: 715-719. DOI: 10.1038/s41567-021-01171-w .
[5]
LIT X, JIANGS W, SHENB W, et al. Quantum Anomalous Hall Effect from Intertwined Moiré Bands[J]. Nature, 2021, 600(7890): 641-646. DOI: 10.1038/s41586-021-04171-1 .
[6]
REGANE C, WANGD Q, JINC H, et al. Mott and Generalized Wigner Crystal States in WSe2/WS2 Moiré Superlattices[J]. Nature, 2020, 579(7799): 359-363. DOI: 10.1038/s41586-020-2092-4 .
[7]
SHIMAZAKIY, SCHWARTZI, WATANABEK, et al. Strongly Correlated Electrons and Hybrid Excitons in a Moiré Heterostructure[J]. Nature, 2020, 580(7804): 472-477. DOI: 10.1038/s41586-020-2191-2 .
[8]
TANGY H, LIL Z, LIT X, et al. Simulation of Hubbard Model Physics in WSe2/WS2 Moiré Superlattices[J]. Nature, 2020, 579(7799): 353-358. DOI: 10.1038/s41586-020-2085-3 .
[9]
XUY, LIUS, RHODESD A, et al. Correlated Insulating States at Fractional Fillings of Moiré Superlattices[J]. Nature, 2020, 587(7833): 214-218. DOI: 10.1038/s41586-020-2868-6 .
[10]
ZENGY H, XIAZ C, KANGK F, et al. Thermodynamic Evidence of Fractional Chern Insulator in Moiré MoTe2 [J]. Nature, 2023, 622: 69-73. DOI: 10.1038/s41586-023-06452-3 .
[11]
LIH Q, KUMARU, SUNK, et al. Spontaneous Fractional Chern Insulators in Transition Metal Dichalcogenide Moiré Superlattices[J]. Phys Rev Research, 2021, 3(3): L032070. DOI: 10.1103/physrevresearch.3.l032070 .
[12]
CHIUM H, ZHANGC D, SHIUH W, et al. Determination of Band Alignment in the Single-layer MoS2/WSe2 Heterojunction[J]. Nat Commun, 2015, 6: 7666. DOI: 10.1038/ncomms8666 .
[13]
HILLH M, RIGOSIA F, RIMK T, et al. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy[J]. Nano Lett, 2016, 16(8): 4831-4837. DOI: 10.1021/acs.nanolett.6b01007 .
[14]
JIANGY, CHENS L, ZHENGW H, et al. Interlayer Exciton Formation, Relaxation, and Transport in TMD van Der Waals Heterostructures[J]. Light Sci Appl, 2021, 10(1): 72. DOI: 10.1038/s41377-021-00500-1 .
[15]
LIUY P, GAOY J, ZHANGS Y, et al. Valleytronics in Transition Metal Dichalcogenides Materials[J]. Nano Res, 2019, 12(11): 2695-2711. DOI: 10.1007/s12274-019-2497-2 .
XUK, XUY F, ZHANGH, et al. The Role of Anderson's Rule in Determining Electronic, Optical and Transport Properties of Transition Metal Dichalcogenide Heterostructures[J]. Phys Chem Chem Phys, 2018, 20(48): 30351-30364. DOI: 10.1039/c8cp05522j .
[18]
ZHANGC X, GONGC, NIEY F, et al. Systematic Study of Electronic Structure and Band Alignment of Monolayer Transition Metal Dichalcogenides in Van der Waals Heterostructures[J]. 2D Mater, 2017, 4: 015026. DOI: 10.1088/2053-1583/4/1/015026 .
[19]
RIVERAP, SCHAIBLEYJ R, JONESA M, et al. Observation of Long-lived Interlayer Excitons in Monolayer MoSe2-WSe2 Heterostructures[J]. Nat Commun, 2015, 6: 6242. DOI: 10.1038/ncomms7242 .
[20]
BARANOWSKIM, SURRENTEA, KLOPOTOWSKIL, et al. Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van Der Waals Heterostructure[J]. Nano Lett, 2017, 17(10): 6360-6365. DOI: 10.1021/acs.nanolett.7b03184 .
[21]
MILLERB, STEINHOFFA, PANOB, et al. Long-lived Direct and Indirect Interlayer Excitons in van Der Waals Heterostructures[J]. Nano Lett, 2017, 17(9): 5229-5237. DOI: 10.1021/acs.nanolett.7b01304 .
[22]
KIEMLEJ, SIGGERF, LORKEM, et al. Control of the Orbital Character of Indirect Excitons in MoS2/WS2 Heterobilayers[J]. Phys Rev B, 2020, 101: 121404. DOI: 10.1103/PhysRevB.101.121404 .
[23]
JAUREGUIL A, JOEA Y, PISTUNOVAK, et al. Electrical Control of Interlayer Exciton Dynamics in Atomically Thin Heterostructures[J]. Science, 2019, 366(6467): 870-875. DOI: 10.1126/science.aaw4194 .
[24]
NAGLERP, PLECHINGERG, BALLOTTINM V, et al. Interlayer Exciton Dynamics in a Dichalcogenide Monolayer Heterostructure[J]. 2D Mater, 2017, 4(2): 025112. DOI: 10.1088/2053-1583/aa7352 .
[25]
UNUCHEKD, CIARROCCHIA, AVSARA, et al. Room-temperature Electrical Control of Exciton Flux in a van Der Waals Heterostructure[J]. Nature, 2018, 560(7718): 340-344. DOI: 10.1038/s41586-018-0357-y .
[26]
SHINOKITAK, MIYAUCHIY, WATANABEK, et al. Resonant Coupling of a Moiré Exciton to a Phonon in a WSe2/MoSe2 Heterobilayer[J]. Nano Lett, 2021, 21(14): 5938-5944. DOI: 10.1021/acs.nanolett.1c00733 .
[27]
WANGX, ZHUJ Y, SEYLERK L, et al. Moiré Trions in MoSe2/WSe2 Heterobilayers[J]. Nat Nanotechnol, 2021, 16(11): 1208-1213. DOI: 10.1038/s41565-021-00969-2 .
[28]
MAKK F, SHANJ. Photonics and Optoelectronics of 2D Semiconductor Transition Metal Dichalcogenides[J]. Nat Photonics, 2016, 10: 216-226. DOI: 10.1038/nphoton.2015.282 .
[29]
XUX D, YAOW, XIAOD, et al. Spin and Pseudospins in Layered Transition Metal Dichalcogenides[J]. Nat Phys, 2014, 10: 343-350. DOI: 10.1038/nphys2942 .
RIVERAP, YUH Y, SEYLERK L, et al. Interlayer Valley Excitons in Heterobilayers of Transition Metal Dichalcogenides[J]. Nat Nanotechnol, 2018, 13(11): 1004-1015. DOI: 10.1038/s41565-018-0193-0 .
[32]
YUH Y, CUIX D, XUX D, et al. Valley Excitons in Two-dimensional Semiconductors[J]. Natl Sci Rev, 2015, 2(1): 57-70. DOI: 10.1093/nsr/nwu078 .
[33]
ZENGH L, DAIJ F, YAOW, et al. Valley Polarization in MoS2 Monolayers by Optical Pumping[J]. Nat Nanotechnol, 2012, 7(8): 490-493. DOI: 10.1038/nnano.2012.95 .
[34]
DUL J, HASANT, CASTELLANOS-GOMEZA, et al. Engineering Symmetry Breaking in 2D Layered Materials[J]. Nat Rev Phys, 2021, 3: 193-206. DOI: 10.1038/s42254-020-00276-0 .
[35]
SCHAIBLEYJ R, YUH Y, CLARKG, et al. Valleytronics in 2D Materials[J]. Nat Rev Mater, 2016, 1: 16055. DOI: 10.1038/natrevmats.2016.55 .
[36]
TRANK, MOODYG, WUF C, et al. Evidence for Moiré Excitons in van der Waals Heterostructures[J]. Nature, 2019, 567(7746): 71-75. DOI: 10.1038/s41586-019-0975-z .
[37]
SEYLERK L, RIVERAP, YUH Y, et al. Signatures of Moiré-trapped Valley Excitons in MoSe2/WSe2 Heterobilayers[J]. Nature, 2019, 567(7746): 66-70. DOI: 10.1038/s41586-019-0957-1 .
[38]
WUF C, LOVORNT, MACDONALDA H. Theory of Optical Absorption by Interlayer Excitons in Transition Metal Dichalcogenide Heterobilayers[J]. Phys Rev B, 2018, 97(3): 035306. DOI: 10.1103/physrevb.97.035306 .
[39]
JINC H, REGANE C, WANGD Q, et al. Identification of Spin, Valley and Moiré Quasi-angular Momentum of Interlayer Excitons[J]. Nat Phys, 2019, 15(11): 1140-1144. DOI: 10.1038/s41567-019-0631-4 .
[40]
BAIY S, ZHOUL, WANGJ, et al. Excitons in Strain-induced One-dimensional Moiré Potentials at Transition Metal Dichalcogenide Heterojunctions[J]. Nat Mater, 2020, 19(10): 1068-1073. DOI: 10.1038/s41563-020-0730-8 .
[41]
PAIKE Y, ZHANGL, BURGG W, et al. Interlayer Exciton Laser of Extended Spatial Coherence in Atomically Thin Heterostructures[J]. Nature, 2019, 576(7785): 80-84. DOI: 10.1038/s41586-019-1779-x .
[42]
HSUW T, ZHAOZ A, LIL J, et al. Second Harmonic Generation from Artificially Stacked Transition Metal Dichalcogenide Twisted Bilayers[J]. ACS Nano, 2014, 8(3): 2951-2958. DOI: 10.1021/nn500228r .
[43]
YUANL, ZHENGB Y, KUNSTMANNJ, et al. Twist-angle-dependent Interlayer Exciton Diffusion in WS2-WSe2 Heterobilayers[J]. Nat Mater, 2020, 19(6): 617-623. DOI: 10.1038/s41563-020-0670-3 .
[44]
MAKK F, HEK L, SHANJ, et al. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity[J]. Nat Nanotechnol, 2012, 7(8): 494-498. DOI: 10.1038/nnano.2012.96 .
[45]
YUH Y, LIUG B, YAOW. Brightened Spin-triplet Interlayer Excitons and Optical Selection Rules in van Der Waals Heterobilayers[J]. 2D Mater, 2018, 5(3): 035021. DOI: 10.1088/2053-1583/aac065 .