In the spin-transition materials, the size of each molecule changes with the spin state, which cause lattice distortion. The intermolecular interaction affected by the lattice distortion will lead to the synergistic behavior of spin states, in turn, cause the abrupt transition between the low spin state and the high spin state. Here we consider a two-dimensional spin-transition model incorporating the intermolecular and the intramolecular interactions and investigate the effect of the intramolecular interaction parameters on the spin-transition temperature and the average occupation number based on the Nosé-Hoover molecular dynamics method. Numerical results show that during the hysteresis the spin-transition temperature increases with the increase of the intramolecular coupling parameter and the energy detuning between the high spin state and the low spin state, yet decreases with the increase of the ratio of the degeneracies between the high spin state and the low spin state. The width of the hysteresis decreases with the increase of the intramolecular coupling parameter and the energy detuning, yet increase with the increase of the ratio of the degeneracies between the high spin state and the low spin state. There is a lower limit for the intramolecular coupling parameter and the energy detuning and an upper limit for the ratio of the degeneracies between the high spin state and the low spin state. when the hysteresis can exist.
OHKOSHIS I, IMOTOK, TSUNOBUCHIY, et al. Light-induced Spin-crossover Magnet[J]. Nat Chem, 2011, 3(7): 564-569. DOI: 10.1038/nchem.1067 .
[2]
NAKAYAM, OHTANIR, LINDOYL F, et al. Light-induced Excited Spin State Trapping in Iron(Iii) Complexes[J]. Inorg Chem Front, 2021, 8(2): 484-498. DOI: 10.1039/D0QI01188F .
[3]
EKANAYAKAT K, MAITYK P, DOUDINB, et al. Dynamics of Spin Crossover Molecular Complexes[J]. Nanomaterials, 2022, 12(10): 1742. DOI: 10.3390/nano12101742 .
[4]
BAKERW A, BOBONICHH M. Magnetic Properties of some High-spin Complexes of Iron(II)[J]. Inorg Chem, 1964, 3(8): 1184-1188. DOI: 10.1021/ic50018a027 .
[5]
FÉLIXG, NICOLAZZIW, SALMONL, et al. Enhanced Cooperative Interactions at the Nanoscale in Spin-crossover Materials with a First-order Phase Transition[J]. Phys Rev Lett, 2013, 110(23): 235701. DOI: 10.1103/PhysRevLett.110.235701 .
[6]
BROOKERS. Spin Crossover with Thermal Hysteresis: Practicalities and Lessons Learnt[J]. Chem Soc Rev, 2015, 44(10): 2880-2892. DOI: 10.1039/c4cs00376d .
ZHANGX, COSTAP S, HOOPERJ, et al. Locking and Unlocking the Molecular Spin Crossover Transition[J]. Adv Mater, 2017, 29(39): 1702257. DOI: 10.1002/adma.201702257 .
[9]
VALVERDE-MUÑOZF J, SEREDYUKM, MUÑOZM C, et al. Thermochromic Meltable Materials with Reverse Spin Transition Controlled by Chemical Design[J]. Angew Chem Int Ed Engl, 2020, 59(42): 18632-18638. DOI: 10.1002/anie.202006453 .
LIUZ H, SAKAIY, YANGJ Y, et al. Sequential Spin State Transition and Intermetallic Charge Transfer in PbCoO3 [J]. J Am Chem Soc, 2020, 142(12): 5731-5741. DOI: 10.1021/jacs.9b13508 .
SUF Q, JIAOH J. Pressure Modulated Spin Pumping in the Spin-transition Materials[J]. J Shanxi Univ Nat Sci Ed, 2021, 44(6): 1123-1130. DOI: 10.13451/j.sxu.ns.2021024 .
[17]
HALDERG J, KEPERTC J, MOUBARAKIB, et al. Guest-dependent Spin Crossover in a Nanoporous Molecular Framework Material[J]. Science, 2002, 298(5599): 1762-1765. DOI: 10.1126/science.1075948 .
[18]
BAOX, SHEPHERDH J, SALMONL, et al. The Effect of an Active Guest on the Spin Crossover Phenomenon[J]. Angew Chem Int Ed, 2013, 52(4): 1198-1202. DOI: 10.1002/anie.201207218 .
[19]
LIJ Y, HEC T, CHENY C, et al. Tunable Cooperativity in a Spin-crossover Hoffman-like Metal–Organic Framework Material by Aromatic Guests[J]. J Mater Chem C, 2015, 3(30): 7830-7835. DOI: 10.1039/C5TC00432B .
[20]
ZHANGC J, LIANK T, HUANGG Z, et al. Hysteretic Four-step Spin-crossover in a 3D Hofmann-type Metal-organic Framework with Aromatic Guest[J]. Chem Commun, 2019, 55(74): 11033-11036. DOI: 10.1039/c9cc06017k .
[21]
CAMBIL, SZEGOL. Uber Die Magnetische Susceptibilitat Der KomplexenVerbindungen[J]. Ber Dtsch Chem Ges,1931,64(10): 2591-2598.DOI:10.1002/cber.19310641002 .
[22]
SPIERINGH, BOUKHEDDADENK, LINARESJ, et al. Total Free Energy of a Spin-crossover Molecular System[J]. Phys Rev B, 2004, 70(18): 184106. DOI: 10.1103/physrevb.70.184106 .
[23]
NISHINOM, BOUKHEDDADENK, KONISHIY, et al. Simple Two-dimensional Model for the Elastic Origin of Cooperativity Among Spin States of Spin-crossover Complexes[J]. Phys Rev Lett, 2007, 98(24): 247203. DOI: 10.1103/PhysRevLett.98.247203 .
[24]
LORENCM, BALDEC, KASZUBW, et al. Cascading Photoinduced, Elastic, and Thermal Switching of Spin States Triggered by a Femtosecond Laser Pulse in an Fe(III) Molecular Crystal[J]. Phys Rev B, 2012, 85(5): 054302. DOI: 10.1103/physrevb.85.054302 .
[25]
PAEZ-ESPEJOM, SY M, BOUKHEDDADENK. Elastic Frustration Causing Two-step and Multistep Transitions in Spin-crossover Solids: Emergence of Complex Antiferroelastic Structures[J]. J Am Chem Soc, 2016, 138(9): 3202-3210. DOI: 10.1021/jacs.6b00049 .
[26]
CRUDDASJ, POWELLB J. Spin-state Ice in Elastically Frustrated Spin-crossover Materials[J]. J Am Chem Soc, 2019, 141(50): 19790-19799. DOI: 10.1021/jacs.9b09191 .
[27]
NDIAYEM, ISLAM BELMOURI NEL, LINARESJ, et al. Elastic Origin of the Unsymmetrical Thermal Hysteresis in Spin Crossover Materials: Evidence of Symmetry Breaking[J]. Symmetry, 2021, 13(5): 828. DOI: 10.3390/sym13050828 .
[28]
CRUDDASJ, POWELLB J. Multiple Coulomb Phases with Temperature-tunable Ice Rules in Pyrochlore Spin-crossover Materials[J]. Phys Rev B, 2021, 104(2): 024433. DOI: 10.1103/physrevb.104.024433 .
[29]
AFFESK, SINGHY, BOUKHEDDADENK. Electro-elastic Modeling of Thermal Spin Transition in Diluted Spin-crossover Single Crystals[J]. Int J Mol Sci, 2022, 23(22): 13854. DOI: 10.3390/ijms232213854 .
[30]
CHENZ Y, LIUQ, CHENGY, et al. Manipulating Electron-transfer Events in [Fe4Co4] Cubes via a Mixed-ligand Approach: The Impact of Elastic Frustration[J]. Angew Chem Int Ed Engl, 2023, 62(29): e202301124. DOI: 10.1002/anie.202301124 .
[31]
NOSÉS. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods[J]. J Chem Phys, 1984, 81(1): 511-519. DOI: 10.1063/1.447334 .
[32]
HOOVERW G. Canonical Dynamics: Equilibrium Phase-space Distributions[J]. Phys Rev A, 1985, 31(3): 1695-1697. DOI: 10.1103/physreva.31.1695 .