1.Institute of Loess Plateau, Shanxi Key Laboratory for Ecological Restoration of Loess Plateau, Shanxi University, Taiyuan 030006, China
2.Department of Biological Science and Technology, Jinzhong University, Jinzhong 030600, China
Show less
文章历史+
Received
Accepted
Published
2023-10-22
Issue Date
2026-01-28
PDF (2705K)
摘要
磺胺类(Sulfonamides, SAs)抗生素是畜禽养殖中广泛使用的抗生素之一,在畜禽粪便中残留量高,可经过粪污进入环境,加速耐药微生物的形成和耐药性的传播,威胁人类健康。黑水虻幼虫(BSFL)为重要的腐食性昆虫,可高效降解禽畜粪便,研究禽畜粪便中磺胺对黑水虻幼虫生长及肠道微生物群落组成产生的影响,对黑水虻转化含有抗生素的禽畜粪便及降低抗生素污染具有重要意义。因此,本研究将黑水虻幼虫暴露于浓度为1 000 μg/kg磺胺的猪粪中,基于16SrRNA高通量测序技术分析了幼虫肠道微生物群落组成,探讨了磺胺抗生素对幼虫生长、基质转化率和肠道菌群结构的影响。结果表明,添加磺胺后幼虫重量和基质转化率显著高于对照组。稀释曲线、Venn图以及多样性指数分析结果表明,磺胺添加处理后黑水虻幼虫肠道微生物的多样性显著降低。厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidota)、变形菌门(Proteobacteria)和放线菌门(Actinobacteriota)是黑水虻幼虫肠道中主要的细菌类群,经磺胺处理后,对肠道微生物组成有一定的影响,其中梭状芽孢杆菌1属(Clostridium sensu stricto 1)的相对丰度显著提高,而其他优势属,如土生孢杆菌属(Terrisporobacter)、营发酵单胞菌属(Dysgonomonas)、肠球菌属(Enterococcus)、苏黎世杆菌属(Turicibacter)的相对丰度有所降低,而栖河菌属(Fluviicola)、沉积物杆菌属(Sedimentibacter)、八叠球菌属(Sarcina)、丛毛单胞菌属(Comamonas)仅在对照组中出现。此外,微生物共生网络图结果表明,1 000 μg/kg浓度磺胺会降低黑水虻幼虫肠道微生物群的复杂性和稳定性。
Abstract
Sulfonamides (SAs) antibiotics are one of the widely used antibiotics in livestock and poultry farming. They have high residual levels in livestock manure and can enter the environment through feces, accelerating the formation of drug-resistant microorganisms and the spread of drug resistance, and posing a threat to human health. Black soldier fly larvae (BSFL) are important corrosive insects, which can efficiently degrade livestock manure. It is of great significance to study the effects of sulfonamide in livestock manure on the growth of black soldier fly larvae and composition of intestinal microbial community for black soldier fly larvae transforming into livestock manure containing antibiotic and reducing antibiotic pollution. Thus, This study exposed the black soldier fly larvae to pig manure containing 1 000 μg/kg sulfonamide. The composition of gut microbiota in larvae was analyzed using 16SrRNA high-throughput sequencing technology, and the effects of sulfonamide antibiotics on larval growth, waste reduction rate, and gut microbiota structure were explored. The results showed that the weight of larvae and waste reduction rate were significantly higher than those of the control group after the addition of sulfonamide. The results of dilution curve, Venn plot, and diversity index analysis showed that the diversity of gut microbiota in black soldier fly larvae were significantly reduced after sulfonamide addition treatment. Firmicutes, Bacteroidota, Proteobacteria, and Actinobacteriota were the main bacterial groups in the gut of black soldier fly larvae. The sulfonamide addition affected the composition of gut microbiota. The relative abundance of Clostridium sensu stricto 1 genus was significantly increased, while other dominant genera, for example, the relative abundance of the genera Terrisporobacter, Dysgonomonas, Enterococcus, and Turicibacter were decreased, while Fluviicola, Sedimentibacter, Sarcina, and Comamonas were only found in the control group. In addition, the results of the microbial co-currence network indicated that 1 000 μg/kg sulfonamide reduces the complexity and stability of the gut microbiota of black soldier fly larvae.
属水平上的黑水虻幼虫肠道菌群物种丰度聚类热图如图7所示,其可将数据进行物种间丰度相似性聚类,将不同丰度的物种分块聚类,通过颜色梯度来反映不同样本在属水平上群落组成的相似性和差异性[11]。为了更直观地分析属水平上的群落组成,选择丰度排名前30的属,来绘制物种丰度聚类热图[11]。图中丰度最高用红色表示,丰度最低用蓝色表示。所有处理样品中共检测到184个属,对照组(Control)和实验组(SAs)分别检测到166和89个属。由图7可看出,梭状芽孢杆菌1属(Clostridium sensu stricto 1)、土生孢杆菌属(Terrisporobacter)、营发酵单胞菌属(Dysgonomonas)、肠球菌属(Enterococcus)、苏黎世杆菌属(Turicibacter)占对照和实验组的黑水虻幼虫肠道细菌群落的比例分别为76.73%和94.31%,它们为黑水虻幼虫肠道中的优势属,其中梭状芽孢杆菌1属在实验组中的相对丰度显著高于对照组,约为对照组的两倍,而其他优势属均有一定程度的降低。此外,栖河菌属(Fluviicola)、沉积物杆菌属(Sedimentibacter)、八叠球菌属(Sarcina)、丛毛单胞菌属(Comamonas)仅在对照组中出现。
LIF. Study on the Degradation of Typical β -lactam Antibiotics by Hydrangea Larvae and Their Intestinal Microorganisms[D].Wuhan: Huazhong Agricultural University, 2022.
[3]
CHEE-SANFORDJ C, MACKIER I, KOIKES, et al. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes Following Land Application of Manure Waste[J]. J Environ Qual, 2009, 38(3): 1086-1108. DOI: 10.2134/jeq2008.0128 .
[4]
KÜMMERERK. Antibiotics in the Aquatic Environment: A Review: Part II[J]. Chemosphere, 2009, 75(4): 435-441. DOI: 10.1016/j.chemosphere.2008.12.006 .
LIUY G, HANJ H, GAOY L. Current Technologies on Harmless Treatment of Antibiotic Fermentation Residue Composing Gas[J]. Coal Chem Ind, 2015, 38(3): 32-33.
[9]
ZHOUL J, YINGG G, ZHANGR Q, et al. Use Patterns, Excretion Masses and Contamination Profiles of Antibiotics in a Typical Swine Farm, South China[J]. Environ Sci Process Impacts, 2013, 15(4): 802-813. DOI: 10.1039/c3em30682h .
[10]
李梦雅. 食料中磺胺对亮斑扁角水虻生长发育及生理的影响[D]. 武汉: 华中农业大学, 2018.
[11]
LIM Y. The Effect of Sulfonamides-added Feedstuff on the Growth, Development and Physiology of Hermetia Illucens[D]. Wuhan: Huazhong Agricultural University, 2018.
[12]
CAIM M, MAS T, HUR Q, et al. Systematic Characterization and Proposed Pathway of Tetracycline Degradation in Solid Waste Treatment by Hermetia illucens with Intestinal Microbiota[J]. Environ Pollut, 2018, 242(Pt A): 634-642. DOI: 10.1016/j.envpol.2018.06.105 .
[13]
DIENERS, ZURBRÜGGC, TOCKNERK. Conversion of Organic Material by Black Soldier Fly Larvae: Establishing Optimal Feeding Rates[J]. Waste Manag Res, 2009, 27(6): 603-610. DOI: 10.1177/0734242X09103838 .
CHENGM Q. Characterization of Tetracycline Effects on Antibiotic Resistance and Microbial Community in Gut of Goldfish(Carassius Auratus) Linnaeus[D]. Yangling: Northwest A & F University, 2019.
LIH, LIANGH L, XUA L, et al. Effects of Four Antibiotics on Bacterial Community Structure of Earthworm-sludge System[J]. J Microbiol, 2020, 40(1): 37-44. DOI: 10.3969/j.issn.1005-7021.2020.01.005 .
[18]
LALANDERC, SENECALJ, GROS CALVOM, et al. Fate of Pharmaceuticals and Pesticides in Fly Larvae Composting[J]. Sci Total Environ, 2016, 565: 279-286. DOI: 10.1016/j.scitotenv.2016.04.147 .
[19]
GASKINSH R, COLLIERC T, ANDERSOND B. Antibiotics as Growth Promotants: Mode of Action[J]. Anim Biotechnol, 2002, 13(1): 29-42. DOI: 10.1081/ABIO-120005768 .
TIANY D, CAIH Y. The Growth-promoting Mechanism of Nutritional Antibiotics[J]. Feed Ind, 2004, 25(1): 16-18. DOI: 10.3969/j.issn.1001-991X.2004.01.006 .
[24]
AOY, YANGC R, WANGS C, et al. Characteristics and Nutrient Function of Intestinal Bacterial Communities in Black Soldier Fly (Hermetia illucens L.) Larvae in Livestock Manure Conversion[J]. Microb Biotechnol, 2021, 14(3): 886-896. DOI: 10.1111/1751-7915.13595 .
[25]
TURNBAUGHP J, LEYR E, MAHOWALDM A, et al. An Obesity-associated Gut Microbiome with Increased Capacity for Energy Harvest[J]. Nature, 2006, 444(7122): 1027-1031. DOI: 10.1038/nature05414 .
[26]
KRAJMALNIK-BROWNR, ILHANZ E, KANGD W, et al. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation[J]. Nutr Clin Pract, 2012, 27(2): 201-214. DOI: 10.1177/0884533611436116 .
[27]
RAHAT-ROZENBLOOMS, FERNANDESJ, GLOORG B, et al. Evidence for Greater Production of Colonic Short-chain Fatty Acids in Overweight than Lean Humans[J]. Int J Obes (Lond), 2014, 38(12): 1525-1531. DOI: 10.1038/ijo.2014.46 .
[28]
TANGAC M, WAWERUJ W, TOLAY H, et al. Organic Waste Substrates Induce Important Shifts in Gut Microbiota of Black Soldier Fly (Hermetia illucens L.): Coexistence of Conserved, Variable, and Potential Pathogenic Microbes[J]. Front Microbiol, 2021, 12: 635881. DOI: 10.3389/fmicb.2021.635881 .
[29]
SHUMOM, KHAMISF M, OMBURAF L, et al. A Molecular Survey of Bacterial Species in the Guts of Black Soldier Fly Larvae (Hermetia illucens) Reared on Two Urban Organic Waste Streams in Kenya[J]. Front Microbiol, 2021, 12: 687103. DOI: 10.3389/fmicb.2021.687103 .
[30]
WUN, WANGX B, YANZ C, et al. Transformation of Pig Manure by Passage through the Gut of Black Soldier Fly Larvae (Hermetia illucens): Metal Speciation, Potential Pathogens and Metal-related Functional Profiling[J]. Ecotoxicol Environ Saf, 2021, 211: 111925. DOI: 10.1016/j.ecoenv.2021.111925 .
[31]
JIANGC L, JINW Z, TAOX H, et al. Black Soldier Fly Larvae (Hermetia illucens) Strengthen the Metabolic Function of Food Waste Biodegradation by Gut Microbiome[J]. Microb Biotechnol, 2019, 12(3): 528-543. DOI: 10.1111/1751-7915.13393 .
LIY W, MOC H, ZHAON, et al. Investigation of Sulfonamides and Tetracyclines Antibiotics in Soils from Various Vegetable Fields[J]. Environ Sci, 2009, 30(6): 1762-1766. DOI: 10.13227/j.hjkx.2009.06.050 .
[36]
SARMAHA K, MEYERM T, BOXALLA B A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment[J]. Chemosphere, 2006, 65(5): 725-759. DOI: 10.1016/j.chemosphere.2006.03.026 .
[37]
RODRIGUEZ-GONZALEZC, OSPINA-BETANCOURTHC, SANABRIAJ. High Resistance of a Sludge Enriched with Nitrogen-fixing Bacteria to Ammonium Salts and Its Potential as a Biofertilizer[J]. Bioengineering, 2021, 8(5): 55. DOI: 10.3390/bioengineering8050055 .
[38]
HES, ZHOUZ, MENGK, et al. Effects of Dietary Antibiotic Growth Promoter and Saccharomyces cerevisiae Fermentation Product on Production, Intestinal Bacterial Community, and Nonspecific Immunity of Hybrid Tilapia (Oreochromis niloticus Female x Oreochromis aureus Male)[J]. J Anim Sci, 2011, 89(1): 84-92. DOI: 10.2527/jas.2010-3032 .
[39]
YINJ B, ZHANGX X, WUB, et al. Metagenomic Insights into Tetracycline Effects on Microbial Community and Antibiotic Resistance of Mouse Gut[J]. Ecotoxicology, 2015, 24(10): 2125-2132. DOI: 10.1007/s10646-015-1540-7 .
[40]
ZHANGZ Y, ZHANGQ, LUT, et al. Residual Chlorine Disrupts the Microbial Communities and Spreads Antibiotic Resistance in Freshwater[J]. J Hazard Mater, 2022, 423(Pt B): 127152. DOI: 10.1016/j.jhazmat.2021.127152 .
[41]
HANSENS K, RAINEYP B, HAAGENSENJ A J, et al. Evolution of Species Interactions in a Biofilm Community[J]. Nature, 2007, 445(7127): 533-536. DOI: 10.1038/nature05514 .
[42]
LIUS W, YUH, YUY H, et al. Ecological Stability of Microbial Communities in Lake Donghu Regulated by Keystone Taxa[J]. Ecol Indic, 2022, 136: 108695. DOI: 10.1016/j.ecolind.2022.108695 .
[43]
HUANGT, LIZ, TYEK D, et al. Probiotic Supplementation during Pregnancy Alters Gut Microbial Networks of Pregnant Women and Infants[J]. Front Microbiol, 2022, 13: 1042846. DOI: 10.3389/fmicb.2022.1042846 .
[44]
HAOJ W, LIUS, GUOZ X, et al. Effects of Disinfectants on Larval Growth and Gut Microbial Communities of Black Soldier Fly Larvae[J]. Insects, 2023, 14(3): 250. DOI: 10.3390/insects14030250 .