Nb2O5/Nb2C肖特基结的制备及全光谱催化降解性能研究

辛德华 ,  王敏 ,  张苑群 ,  朱文垚 ,  石雅宁 ,  李国栋

山西大学学报(自然科学版) ›› 2025, Vol. 48 ›› Issue (6) : 1196 -1206.

PDF (3548KB)
山西大学学报(自然科学版) ›› 2025, Vol. 48 ›› Issue (6) : 1196 -1206. DOI: 10.13451/j.sxu.ns.2024143
化学

Nb2O5/Nb2C肖特基结的制备及全光谱催化降解性能研究

作者信息 +

Preparation of Nb2O5/Nb2C Schottky Junction and the Full-spectrum Driven Degradation Performance

Author information +
文章历史 +
PDF (3632K)

摘要

以Nb2AlC为原料,通过室温HF刻蚀结合原位水热反应制备Nb2O5/Nb2C肖特基结。由于非金属等离子体Nb2C和Nb2O5中氧空位协同的表面等离激元共振效应,所制备Nb2O5/Nb2C样品的全光谱吸收显著增强。光生载流子(包括热电子和热空穴)的复合因肖特基势垒的存在和界面内建电场的形成被显著抑制。因此,Nb2O5/Nb2C的全光谱催化降解抗生素性能得到增强,在模拟太阳光照射下对盐酸四环素的降解速率为0.020 3 min-1,分别为Nb2AlC、Nb2C和Nb2O5的4.61、2.74、2.18倍,在近红外光照射下的降解速率为0.003 7 min-1,分别为Nb2AlC、Nb2C和Nb2O5的4.11、2.31、4.62倍,同时具有良好的循环稳定性。

Abstract

Nb2O5/Nb2C Schottky junction was prepared using Nb2AlC as raw material by HF etching at room temperature combined with in-situ hydrothermal reaction. The full-spectrum absorption of Nb2O5/Nb2C was significantly enhanced due to the synergistic surface plasmon resonance effect between non-metallic plasma of Nb2C and oxygen vacancies in Nb2O5. Additionally, the existence of the Schottky barrier and the establishment of an internal electric field inhibit the recombination of photogenerated carriers, encompassing both hot electrons and hot holes. Hence, Nb2O5/Nb2C exhibited the enhanced full-spectrum catalytic degradation performance for antibiotics. The degradation rate of Nb2O5/Nb2C towards tetracycline hydrochloride (TC) under simulated sunlight irradiation was 0.020 3 min-1, which was 4.61, 2.74 and 2.18 times higher than those of Nb2AlC, Nb2C and Nb2O5. Under near-infrared light irradiation, the degradation rate of TC by Nb2O5/Nb2C could reach 0.003 7 min-1, which was 4.11, 2.31 and 4.62 times higher than those of Nb2AlC, Nb2C and Nb2O5. Meanwhile, Nb2O5/Nb2C possessed excellent cycling stability.

Graphical abstract

关键词

Nb2O5 / 二维碳化铌 / 光催化 / 抗生素降解 / 增强机理

Key words

Nb2O5 / Nb2C MXene / photocatalysis / antibiotic degradation / enhancement mechanism

引用本文

引用格式 ▾
辛德华,王敏,张苑群,朱文垚,石雅宁,李国栋. Nb2O5/Nb2C肖特基结的制备及全光谱催化降解性能研究[J]. 山西大学学报(自然科学版), 2025, 48(6): 1196-1206 DOI:10.13451/j.sxu.ns.2024143

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

抗生素的广泛使用在一定程度上促进了养殖业、畜牧业、医药等行业的快速发展,但由此带来的环境问题同样不可忽视1-3。抗生素的滥用及废水的随意排放已经导致了严重的抗生素污染。水生生态系统中,抗生素的存在是增强细菌耐药性、诱发超级细菌的关键因素,同时有可能导致急性或慢性中毒2。传统的污水治理方法,如物理化学吸附、微生物氧化、热/电催化氧化、膜分离等,无法彻底去除低浓度抗生素,有可能造成二次污染,同时具有能耗大、操作复杂等缺点4-5

半导体基光催化氧化技术已被证实可用于治理抗生素污染6-7。光催化技术应用的关键在于半导体光催化材料的选择。五氧化二铌(Nb2O5)因具有成本低、易于合成、化学稳定性高和能带结构可调等特点在光催化领域引起了广泛关注8-9。但是,Nb2O5无法利用可见-近红外光(约占太阳光谱95%),并且导电性差、光生电子-空穴对复合率高,制约了其在光催化抗生素治理领域的应用10-12

近年来,二维过渡金属碳化物、氮化物或碳氮化物(MXene)材料(Ti3C2、Nb2C、V2C等)在光催化领域已成为研究关注点之一13-17。其由三元层状碳氮化物(MAX)相(Ti3AlC2、Nb2AlC、V2AlC等)刻蚀去除Al中间层而获得,表面含有的丰富多样的官能团使其展现出对有机污染物的强吸附能力18-19。此外,MXene材料具有与贵金属相似的表面等离激元共振(Surface Plasmon Resonance,SPR)效应,能够高效产生热电子和热空穴,驱动光催化反应的进行1620。Wu等通过HF刻蚀结合超声波破碎制备得到的少层Ti3C2 MXene,在全光谱照射下可降解抗生素和有机染料;但Ti3C2 MXene热载流子的分离效率较低,导致其光催化降解性能较弱21

针对Nb2C MXene载流子分离效率低的问题,同时为了提高宽禁带半导体Nb2O5对太阳能的利用率,本文通过HF刻蚀结合原位水热反应制备得到了Nb2O5/Nb2C光催化材料,研究了其对盐酸四环素(Tetracycline Hydrochloride,TC)的全光谱催化降解活性及循环稳定性。实验结果表明,Nb2O5/Nb2C的降解性能明显高于单组分材料,该现象归因于界面肖特基结的形成及Nb2C MXene和Nb2O5中氧空位协同的SPR效应。本策略为高活性全光谱响应光催化材料的开发及其在光催化污水治理领域的应用提供了新思路。

1 实验部分

1.1 主要试剂与仪器

1.1.1 实验试剂

Nb2AlC(200目)购自吉林省一一科技有限公司,氢氟酸(HF,质量分数40%),无水乙醇(CH3CH2OH),氧化铌(Nb2O5),盐酸四环素(C22H25ClN2O8,TC),草酸钠(Na2C2O4),对苯醌(C6H4O2)及叔丁醇(C4H10O)购自国药集团化学试剂有限公司。

1.1.2 表征仪器

X射线衍射仪(X-ray Diffractometer,XRD,D/max-2200X,日本理学株式会社),傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FT-IR,TENSOR,德国布鲁克公司),显微共焦拉曼光谱仪(Raman,Renishaw,英国雷尼绍公司),扫描电子显微镜(Scanning Electron Microscope,SEM,S-4800,日本日立公司),比表面积及孔径分析仪(Surface Area and Pore Size Analyzer,NOVA2200e,美国康塔仪器公司),X射线光电子能谱仪(X-ray Photoelectron Spectrometer,XPS,AXIS Supra,日本岛津公司),紫外-可见-近红外分光光度计(Ultraviolet-Visible-Near-Infrared Diffuse Reflectance Spectrometer,UV-Vis-NIR DRS,Cary 5000,美国安捷伦科技公司),电子顺磁共振波谱仪(Electron Paramagnetic Resonance Spectrometer,EPR,A300,德国布鲁克公司),荧光分光光度计(Photoluminescence Spectrophotometer,PL,F-4600,日本日立公司),液相色谱-质谱联用仪(Liquid Chromatography-Mass Spectrometry,LC-MS,LC1290-QQQ-6470,美国安捷伦科技公司)。

1.2 实验方法

1.2.1 Nb2C的制备

称取1.0 g Nb2AlC粉体分散至20 mL HF中,在室温下磁力搅拌72 h。所得沉淀物使用去离子水洗涤至上清液呈弱酸性后,再使用无水乙醇洗涤3次,70 ℃真空干燥12 h后,即得Nb2C粉体。

1.2.2 Nb2O5/Nb2C的制备

称取0.4 g Nb2C至40 mL去离子水中,剧烈搅拌30 min至分散均匀后,将所得悬浊液转移至50 mL反应釜中,180 ℃反应6 h。所得沉淀物洗涤后置于70 ℃真空干燥12 h,即得Nb2O5/Nb2C粉体。

1.3 光催化活性测试

在50 mL石英试管中加入20 mg光催化剂,同时加入40 mL的TC溶液(20 mg·L-1),光催化降解过程在CEL-LAB500多位光化学反应仪中进行。500 W氙灯被用作模拟太阳光光源,配备800 nm截止滤光片作为近红外光光源。首先在黑暗条件下搅拌30 min,然后在光照下进行光催化反应。按照时间间隔取3 mL分散液,滤头滤去催化剂粉体,上清液吸光度由紫外-可见吸收光谱测得,表征TC的降解情况。

1.4 光电化学测试

使用电化学工作站(CHI 660E型,上海辰华仪器有限公司)进行光电化学测试,实验采用标准三电极电解池:工作电极为涂有样品的氟掺杂二氧化锡(Fluorine-doped Tin Oxide,FTO)导电玻璃,对电极和参比电极分别为Pt片和饱和Ag/AgCl电极,0.1 mol·L-1的Na2SO4溶液作为电解液,并以500 W氙灯模拟太阳光。工作电极的制备:20 mg催化剂在超声下分散至0.2 mL萘酚和1 mL乙醇混合液,随后涂敷于FTO玻璃上,于150 ℃干燥2 h,即得工作电极。

2 结果与讨论

2.1 材料的结构表征

2.1.1 物相组成和晶体结构分析

通过XRD表征样品的晶体结构和物相组成。原料及样品的XRD谱显示在图1(a)中。如图所示,与HF反应后,Nb2AlC的特征衍射峰消失,同时可以观察到Nb2C的特征衍射峰,表明Nb2AlC中的Al层被成功刻蚀。Nb2O5/Nb2C的XRD图谱中,Nb2O5和Nb2C的衍射峰共存,表明成功制备得到了Nb2O5/Nb2C复合材料;此外,Nb2O5的原位生长导致Nb2C的衍射峰明显向高角度方向偏移。

通过FT-IR光谱分析样品的价键类型及官能团信息。如图1(b)所示,Nb2AlC、Nb2C和Nb2O5/Nb2C的FT-IR光谱中,位于3 408 cm-11 614 cm-1左右的吸收峰分别对应于表面吸附水分子中-OH羟基的伸缩振动和弯曲振动;Nb2C和Nb2O5/Nb2C的光谱中,可以观察到 键的伸缩振动峰(~1 028 cm-1)、Nb=O键的伸缩振动峰(~905 cm-1)及 键的角振动峰(~647 cm-122-23。与单组分Nb2C相比,Nb2O5/Nb2C中 键的特征吸收峰发生了轻微偏移。

样品的Raman光谱如图1(c)所示,Nb2AlC的Raman光谱中可以观察到 键(900 cm-1~1 000 cm-1)和C原子(1 300 cm-1~1 600 cm-1)的特征振动峰1624;HF刻蚀后, 键的特征峰消失,进一步表明Al层被成功刻蚀。在Nb2O5的Raman光谱中,位于229 cm-1693 cm-1左右的特征峰分别对应于 键的伸缩振动模和 键的对称伸缩振动模25。Nb2C与Nb2O5复合后,两者的Raman峰均发生了轻微偏移,结合XRD和FT-IR测试结果可知,Nb2O5与Nb2C之间存在强相互作用25-26,该现象归因于界面肖特基结的形成。

2.1.2 微观形貌和孔结构分析

通过SEM图观察样品的微观形貌。如图2(a)所示,Nb2AlC表现为表面附着有小颗粒的块状堆积形貌。Nb2C则表现为层状堆积形貌(图2(b)),进一步表明Al层被成功刻蚀。图2(c)—图2(d)为Nb2O5/Nb2C的SEM图,图中的圆柱状结构归属于Nb2O5,其直径约为440 nm。Nb2O5在Nb2C的表面及层间原位生长,且两者之间的界面接触紧密,这一结构提高了光生载流子的分离效率和转移速率。

样品的N2吸附-脱附曲线如图3(a)所示,所有样品的吸附曲线均为Ⅳ型曲线,表明所制备光催化剂为介孔材料27-29。样品的孔结构的比表面积、孔体积及平均孔径等参数列在表1中,Nb2O5/Nb2C的比表面积最大,为15.7 m2g-1图3(b)为样品的孔径分布曲线,样品的孔尺寸介于5 nm~50 nm之间,与其介孔结构相对应。由表1可知,Nb2O5/Nb2C的总的孔体积最大,为0.063 cm3g-1,其平均孔径(17.10 nm)略小于Nb2C(17.96 nm)。

2.1.3 元素组成和化学态分析

通过XPS测试进一步揭示样品的元素组成和化学态。Nb2O5和Nb2O5/Nb2C的XPS全谱中可以观察到C、Nb和O元素的特征峰(图4(a))。图4(b)为高分辨的Nb 3d图谱。对于Nb2O5(Nb2O5/Nb2C),位于209.58 eV和206.88 eV(209.98 eV和207.08 eV)处的特征峰分别对应Nb 3d3/2和Nb 3d5/2轨道15。除此之外,Nb2O5/Nb2C的Nb 3d图谱中可以观察到 键的特征峰。样品高分辨的O 1s图谱可被拟合为2个特征峰,高结合能和低结合能处的峰位分别归属于 键和27。Nb2O5/Nb2C中氧元素的结合能明显高于单组分Nb2O5,即与Nb2C耦合后,氧元素的电子云密度减小,表明界面处极化电荷由Nb2O5向Nb2C转移,从而形成肖特基结。

2.2 材料的光学和光电化学性质研究

2.2.1 光学性质分析

通过UV-Vis-NIR DRS光谱表征样品的光学性质。如图5(a)所示,Nb2O5仅可吸收紫外光,其光吸收边约为407 nm。Nb2AlC表现出全光谱吸收特性,其在可见光和近红外光范围内的特征吸收分别归因于横向表面等离激元共振(Transverse Surface Plasmon Resonance,TSPR)和纵向表面等离激元共振(Longitudinal Surface Plasmon Resonance,LSPR)效应16。Al层被HF刻蚀后,形成金属空位和局域空穴态,导致SPR效应增强21。因此,Nb2C的全光谱吸收强度明显高于Nb2AlC。Nb2O5/Nb2C在200 nm~1 200 nm的光吸收低于单组分Nb2C,但在1 200 nm~2 600 nm的吸收强度略高于Nb2C,该现象归因于Nb2O5中氧空位的存在。Nb2O5/Nb2C的EPR图谱(图5(a)中插图)在g=2.002处可以观察到明显的特征信号,进一步证实了其晶格中氧空位的存在30。根据Kubelka-Munk转换曲线(图5(b)),计算得到Nb2O5的带隙能约为3.19 eV。如图5(c)所示,Nb2O5的价带电势为+2.52 eV;根据公式ECB=EVB-Eg,计算得到其导带电势为-0.67 eV

2.2.2 光电化学性质分析

通过PL光谱和电化学阻抗图谱表征样品的光电化学性质。图6(a)为所制备样品的PL光谱,激发波长为370 nm。由图可知,单组分Nb2AlC和Nb2O5具有相对较强的荧光发射峰;Nb2C的发射峰强度明显低于Nb2AlC,且向长波长方向偏移。Nb2O5/Nb2C的发射峰强度最低,表明Nb2O5与Nb2C复合可以抑制光生载流子复合,提高电子-空穴对的分离效率31图6(b)显示了样品的电化学阻抗图谱,采用ZSimpWin软件对Nyquist点图进行拟合,等效模拟电路如图6(b)中插图所示,其中代表电荷转移电阻其中RsCRctQR分别代表溶液电阻、空间电荷电容、电荷转移电阻、电化学双电层电容和电极电阻32。Nb2AlC、Nb2C、Nb2O5/Nb2C和Nb2O5的电荷转移电阻分别为183.4 kΩ、97.1 kΩ、90.7 kΩ和162.8 kΩ,Nb2O5/Nb2C的电荷转移电阻最小,有利于光生载流子的界面传输。

2.3 材料的光降解性能研究

2.3.1 模拟太阳光下催化材料的催化性能分析

通过光催化反应系统测试了样品在模拟太阳光照射下对TC的降解曲线。如图7(a)所示,Nb2O5/Nb2C的光催化活性明显高于单组分材料。使用模拟太阳光照射60 min后,单一组分的Nb2AlC、Nb2C和Nb2O5对TC的降解效率分别为26.14%、38.79%和45.28%,而Nb2O5/Nb2C对TC的降解效率则增大至71.88%;在图7(b)的动力学曲线中,Nb2O5/Nb2C对TC的降解速率为0.020 3 min-1,分别为Nb2AlC、Nb2C和Nb2O5的4.61、2.74和2.18倍。

2.3.2 近红外光下催化材料的催化性能分析

通过光催化反应系统测试了样品在近红外光照射下对TC的降解曲线。如图8(a)所示,光照180 min后,Nb2O5/Nb2C的降解效率由18.86%(Nb2AlC)、30.23%(Nb2C)、17.39%(Nb2O5)增大至51.22%;相应的降解速率由0.000 9 min-10.001 6 min-10.000 8 min-1增大至0.003 7 min-1,如图8(b)所示。结果表明,Nb2O5/Nb2C表现出增强的全光谱催化降解活性,该现象归因于界面肖特基结的形成及光学性质的改善。

2.3.3 循环稳定性分析

通过循环实验表征Nb2O5/Nb2C的稳定性。如图9(a)和图9(b)所示,在模拟太阳光和近红外光照射下,经过连续的5次循环反应后,Nb2O5/Nb2C对TC的降解效率分别降低了约2.03%和4.26%。循环反应期间,催化剂表面的部分活性位点被反应物和产物占据,导致催化活性轻微降低33-34

2.3.4 TC的降解路径分析

通过LC-MS技术检测Nb2O5/Nb2C光催化降解TC的中间产物并分析降解路径。模拟太阳光照射60 min后,TC降解液的LC-MS分析中,于不同保留时间(retention times,rt)处采集的质谱如图10(a—f)所示,插图为中间产物的结构示意图及相应的质荷比(m/z)。根据测试结果及相关的文献报道35-44,推测出TC存在3种可能的降解路径,如图10(g)所示。路径Ⅰ中,TC(m/z=445)通过去羟基化作用转变为P1(m/z=461),P1去乙酰基化转化为P4(m/z=418)。路径Ⅱ中,TC经过去甲基化和氧化反应逐步转变为P3(m/z=431)和P5(m/z=415)。路径Ⅲ中,TC通过羟基化氧化反应转变为P2(m/z=459),P2脱去羟基和氨基基团生成P6(m/z=413)。随后,产物P4、P5和P6被分解为P7(m/z=218)和P8(m/z=142),P9和P8通过氧化裂解反应进一步被转变为P9(m/z=128)和P10(m/z=110)。最终,P9和P10被分解为H2O、CO2或其他小分子。

2.4 材料的全光谱催化机理研究

据文献[24]报道,Nb2O5和Nb2C的功函数分别为3.71 eV和4.12 eV,即Nb2O5的费米能级高于Nb2C。Nb2O5与Nb2C接触时,Nb2O5的自由电子转移至Nb2C,直至费米能级相平(图11(a))。界面处,Nb2O5的能带边缘向上弯曲,形成由Nb2O5指向Nb2C的界面内建电场(图11(b))。如图11(c)所示,全光谱照射下,Nb2O5的价带电子跃迁至导带,在价带留下空穴;同时,Nb2C因SPR激发产生高能热电子和热空穴16。内建电场驱动下,高能热电子可以越过肖特基势垒,向Nb2O5的导带位置弛豫,从而抑制热载流子复合。Nb2C的LSPR和TSPR效应能够分别加速Nb2O5的电子跃迁及促进界面电荷迁移,使光生载流子的分离效率得到进一步提升。Nb2O5的导带电子与O2反应产生 自由基,其价带空穴、Nb2C的高能热空穴与H2O反应产生 自由基。通过EPR测试验证 自由基和 自由基,二甲基吡啶氮氧化物(DMPO)被用作捕获剂,结果如图12(a)和(b)所示。Nb2O5/Nb2C在300 W氙灯照射10 min后,可以观察到DMPO- 和DMPO- 的特征信号峰,表明Nb2O5/Nb2C在光照时可以产生 自由基和 自由基,与上述描述相符。最终,TC通过与上述活性氧物种和空穴反应,被分解为H2O、CO2或其他小分子。

3 结论

本文通过HF刻蚀结合原位水热反应成功制备得到了Nb2O5/Nb2C肖特基结,XRD、FT-IR及Raman测试结果表明,Nb2O5与Nb2C之间存在强相互作用。Nb2C与Nb2O5中氧空位协同的SPR效应提高了材料体系对太阳能的利用率,界面肖特基结的形成提高了光生载流子的分离效率。因此,Nb2O5/Nb2C的全太阳光谱催化活性被显著提升,同时具有良好的循环稳定性。本文为高活性全光谱响应光催化材料的设计、制备及其在光催化环境修复领域的应用提供了新策略。

参考文献

[1]

YANG W Q, LI J, YAO Z L, et al. A Review on the Alternatives to Antibiotics and the Treatment of Antibiotic Pollution: Current Development and Future Prospects[J]. Sci Total Environ, 2024, 926: 171757. DOI: 10.1016/j.scitotenv.2024.171757 .

[2]

YU C, PANG H, WANG J H, et al. Occurrence of Antibiotics in Waters, Removal by Microalgae-based Systems, and Their Toxicological Effects: A Review[J]. Sci Total Environ, 2022, 813: 151891. DOI: 10.1016/j.scitotenv.2021.151891 .

[3]

ZHAO F, YU Q, ZHANG X. A Mini-Review of Antibiotic Resistance Drivers in Urban Wastewater Treatment Plants: Environmental Concentrations, Mechanism and Perspectives, Water[J]. Water, 2023, 15(17): 3165. DOI: 10.3390/w15173165 .

[4]

YU G L, SUN Q F, YANG Y, et al. BiOCl-based Composites for Photocatalytic Degradation of Antibiotics: A Review of Synthesis Method, Modification, Factors Affecting Photodegradation and Toxicity Assessment[J]. J Alloys Compd, 2024, 981: 173733. DOI: 10.1016/j.jallcom.2024.173733 .

[5]

PU S L, ZHAO Q R, LUO X, et al. In-situ Synthesis of AgCl/WO3 Loaded with G-C3N4 as Dual Z-scheme Heterojunction for Boosting Photocatalytic Degradation of Antibiotics[J]. Surf Interfaces, 2024, 46: 104016. DOI: 10.1016/j.surfin.2024.104016 .

[6]

HUA X Y, CHEN H J, WANG Z W, et al. Design of Magnetically Separable Double Z-scheme Ag3PO4/Fe3O4/MoS2 Heterojunction with Enhanced Photocatalytic Degradation of Antibiotics Under Visible Light Irradiation[J]. Sep Purif Technol, 2024, 347: 127632. DOI: 10.1016/j.seppur.2024.127632 .

[7]

LIU J F, DONG Y B, LIU Q J, et al. MoS2-based Nanocomposites and Aerogels for Antibiotic Pollutants Removal from Wastewater by Photocatalytic Degradation Process: A Review[J]. Chemosphere, 2024, 354: 141582. DOI: 10.1016/j.chemosphere.2024.141582 .

[8]

ÜCKER C L, RIEMKE F, GOETZKE V, et al. Facile Preparation of Nb2O5/TiO2 Heterostructures for Photocatalytic Application[J]. Chem Phys Impact, 2022, 4: 100079. DOI: 10.1016/j.chphi.2022.100079 .

[9]

ÜCKER C L, RODRIGUES F S M, RIEMKE F C, et al. Surface Modification of T-Nb2O5 with Low-crystallinity Nb2O5 to Enhance Photocatalytic Degradation of Rhodamine B[J]. Ceram Int, 2023, 49(21): 34333-34338. DOI: 10.1016/j.ceramint.2023.08.143 .

[10]

LI R Y, LIU X Y, LI Z J. Nb2O5-graphene Heterojunction Composite with Ultrahigh Photocatalytic Activity for Solar Light Driven Photodegradation of Ciprofloxacin[J]. J Photochem Photobiol A Chem, 2024, 446: 115188. DOI: 10.1016/j.jphotochem.2023.115188 .

[11]

ZENG M, WU Y T, WANG Y, et al. Silver Nanoparticle-enhanced Photocatalytic CO2 Reduction over Ag/Nb2O5 Under UV-Vis Light Irradiation[J]. Appl Catal A Gen, 2023, 666: 119412. DOI: 10.1016/j.apcata.2023.119412 .

[12]

GARCÍA-LÓPEZ E I, GENCO A, LAGOSTINA V, et al. Photocatalytic Generation of H2 by Photoreforming of Organics in Aqueous Suspension of Nb2O5/C3N4 Composites[J]. Catal Today, 2023, 423: 114283. DOI: 10.1016/j.cattod.2023.114283 .

[13]

WANG L X, LIU K, FU T, et al. Multiple Effects of Nano-carbon Coating on Mediating Schottky Barrier Height, Inhibiting Ti3C2 Oxidation and Elevating Photocatalytic Activity in BiOBr/Carbon-coated Ti3C2/Exfoliated Bentonite[J]. Chem Eng J, 2024, 480: 148252. DOI: 10.1016/j.cej.2023.148252 .

[14]

XIONG X, ARSHAD N, TAO J Y, et al. Hierarchical Ti3C2/BiVO4 Microcapsules for Enhanced Solar-driven Water Evaporation and Photocatalytic H2 Evolution[J]. J Colloid Interface Sci, 2024, 668: 385-398. DOI: 10.1016/j.jcis.2024.04.081 .

[15]

LI K, ZHU J Q, ZHOU W B, et al. Visible-light-driven Photocatalytic Properties of Nb2C/Bi2WO6 Hybrids with 2D/2D Structure for Efficient Pollutant Removal[J]. J Alloys Compd, 2023, 968: 171955. DOI: 10.1016/j.jallcom.2023.171955 .

[16]

LIU T, TAN G Q, FENG S J, et al. Dual Localized Surface Plasmon Resonance Effect Enhances Nb2AlC/Nb2C MXene Thermally Coupled Photocatalytic Reduction of CO2 Hydrogenation Activity[J]. J Colloid Interface Sci, 2023, 652(Pt A): 599-611. DOI: 10.1016/j.jcis.2023.08.097 .

[17]

ZHOU W B, YU B, ZHU J Q, et al. Hierarchical ZnO/MXene (Nb2C and V2C) Heterostructure with Efficient Electron Transfer for Enhanced Photocatalytic Activity[J]. Appl Surf Sci, 2022, 590: 153095. DOI: 10.1016/j.apsusc.2022.153095 .

[18]

GAO L L, WANG H, ZHOU Y L, et al. Preparation of Ti3C2Tx-based MXene Composite Aerogel and Its Adsorption Performance for Dibutyl Phthalate[J]. Colloids Surf A Physicochem Eng Aspects, 2024, 686: 133452. DOI: 10.1016/j.colsurfa.2024.133452 .

[19]

LIU H Z, WANG X L, WANG R X, et al. Computational Investigations on the Performance of Transition Metal Carbide (MXene) for Methylene Blue Dye Adsorption and Remediation from Wastewater[J]. Mater Today Commun, 2024, 39: 108735. DOI: 10.1016/j.mtcomm.2024.108735 .

[20]

WU Q, TAN L, LIU X M, et al. The Enhanced Near-infrared Photocatalytic and Photothermal Effects of MXene-based Heterojunction for Rapid Bacteria-killing[J]. Appl Catal B Environ, 2021, 297: 120500. DOI: 10.1016/j.apcatb.2021.120500 .

[21]

ZHANG B X, WANG Y, WANG Z Q, et al. Surface Plasmon Resonance Effects of Ti3C2 MXene for Degradation of Antibiotics Under Full Spectrum[J]. Appl Catal B Environ, 2023, 339: 123132. DOI: 10.1016/j.apcatb.2023.123132 .

[22]

QARAAH F A, MAHYOUB S A, HEZAM A, et al. Synergistic Effect of Hierarchical Structure and S-scheme Heterojunction over O-doped G-C3N4/N-doped Nb2O5 for Highly Efficient Photocatalytic CO2 Reduction[J]. Appl Catal B Environ, 2022, 315: 121585. DOI: 10.1016/j.apcatb.2022.121585 .

[23]

CHEN Y M, WANG Z R, ZHANG Y, et al. S-scheme and Schottky Junction Synchronous Regulation Boost Hierarchical CdS@Nb2O5/Nb2CTx (MXene) Heterojunction for Photocatalytic H2 Production[J]. ACS Appl Mater Interfaces, 2023, 15(16): 20027-20039. DOI: 10.1021/acsami.2c21049 .

[24]

TAYYAB M, LIU Y J, LIU Z G, et al. One-pot In-situ Hydrothermal Synthesis of Ternary In2S3/Nb2O5/Nb2C Schottky/S-scheme Integrated Heterojunction for Efficient Photocatalytic Hydrogen Production[J]. J Colloid Interface Sci, 2022, 628(Pt B): 500-512. DOI: 10.1016/j.jcis.2022.08.071 .

[25]

BI X, DU G H, KALAM A, et al. Constructing Anatase TiO2/Amorphous Nb2O5 Heterostructures to Enhance Photocatalytic Degradation of Acetaminophen and Nitrogen Oxide[J]. J Colloid Interface Sci, 2021, 601: 346-354. DOI: 10.1016/j.jcis.2021.05.120 .

[26]

白惊雷, 杨斌盛, 刘斌. Bi/C3N5光催化材料制备及降解活性[J]. 山西大学学报(自然科学版), 2022, 45(5): 1319-1325. DOI: 10. 13451/j.sxu.ns. 2020133 .

[27]

BAI J L, YANG B S, LIU B. Preparation and Degradation Activity of Bismuth Doped C3N5 Photocatalytic Materials[J]. J Shanxi Univ Nat Sci Ed, 2022, 45(5): 1319-1325. DOI: 10. 13451/j.sxu.ns. 2020133 .

[28]

WANG Y W, HU X S, SONG H R, et al. Oxygen Vacancies in Actiniae-like Nb2O5/Nb2C MXene Heterojunction Boosting Visible Light Photocatalytic NO Removal[J]. Appl Catal B Environ, 2021, 299: 120677. DOI: 10.1016/j.apcatb.2021.120677 .

[29]

LIN B, CHEN H, ZHOU Y, et al. 2D/2D Atomic Double-layer WS2/Nb2O5 Shell/Core Nanosheets with Ultrafast Interfacial Charge Transfer for Boosting Photocatalytic H2 Evolution[J]. Chin Chemical Lett, 2021, 32(10): 3128-3132. DOI: 10.1016/j.cclet.2021.03.057 .

[30]

HE Y H, CHEN X, WU Z S, et al. In Situ Fabrication of N-doped Ti3C2Tx-MXene-modified BiOBr Schottky Heterojunction with High Photoelectron Separation Efficiency for Enhanced Photocatalytic Ammonia Synthesis[J]. J Alloys Compd, 2023, 969: 172470. DOI: 10.1016/j.jallcom.2023.172470 .

[31]

LIU Y Q, YI W J, LI C Q, et al. Enwrapping ZnIn2S4 on Vacancy-rich Nb2O5 Nanoplates for Enhanced Photocatalytic Hydrogen Evolution[J]. Inorg Chem Front, 2024, 11(2): 571-578. DOI: 10.1039/D3QI02049E .

[32]

YU R, WANG Y Y, HAO Y X, et al. B-NI-Y Ions Tri-doped Modified Fe2O3/SnO2 Composite Films for Photocatalytic Degradation of Pollutants[J]. Appl Surf Sci, 2024, 655: 159622. DOI: 10.1016/j.apsusc.2024.159622 .

[33]

WANG M, XIN D H, ZHANG W, et al. Defects and Plasma Ag Co-modified S-scheme Ag/NVs-CN/Bi2O2- δ CO3 Heterojunction with Multilevel Charge Transfer Channels for Boosting Full-spectrum-driven Degradation of Antibiotics[J]. J Alloys Compd, 2024, 970: 172672. DOI: 10.1016/j.jallcom.2023.172672 .

[34]

WANG M, TAN G Q, DANG M Y, et al. Dual Defects and Build-in Electric Field Mediated Direct Z-scheme W18O49/g-C3N4- x Heterojunction for Photocatalytic NO Removal and Organic Pollutant Degradation[J]. J Colloid Interface Sci, 2021, 582(Pt A): 212-226. DOI: 10.1016/j.jcis.2020.08.040 .

[35]

YANG W, WANG M, XU C, et al. Enhanced Photocatalytic Activity of Z-scheme CeO2/Ce x Bi2– x WO6 Heterojunction Induced by Ce Doping and Build-in Electric Field[J]. J Mater Sci Mater Electron, 2022, 33(8): 5049-5060. DOI: 10.1007/s10854-022-07693-0 .

[36]

XU K, ZHU Z J, HU C Y, et al. Fabrication of Unconventional S-scheme NiAl LDH/Ag6Si2O7 Heterojunction Photocatalysts: Outstanding Photocatalytic Performance and Photocatalytic Mechanism for Tetracycline Degradation[J]. Colloids Surf A Physicochem Eng Aspects, 2023, 674: 131806. DOI: 10.1016/j.colsurfa.2023.131806 .

[37]

GUAN Z L, LI X M, WU Y, et al. AgBr Nanoparticles Decorated 2D/2D GO/Bi2WO6 Photocatalyst with Enhanced Photocatalytic Performance for the Removal of Tetracycline Hydrochloride[J]. Chem Eng J, 2021, 410: 128283. DOI: 10.1016/j.cej.2020.128283 .

[38]

GU Q Y, XU W H, RONG J, et al. Efficient Photocatalytic Degradation of Tetracycline Using Z-scheme GCN/Bi12O17Br2 Composites Under Visible Light: Process and Mechanism[J]. Colloids Surf A Physicochem Eng Aspects, 2024, 682: 132903. DOI: 10.1016/j.colsurfa.2023.132903 .

[39]

GUO H, NIU C G, ZHANG L, et al. Construction of Direct Z-scheme AgI/Bi2Sn2O7 Nanojunction System with Enhanced Photocatalytic Activity: Accelerated Interfacial Charge Transfer Induced Efficient Cr(VI) Reduction, Tetracycline Degradation and Escherichia coli Inactivation[J]. ACS Sustainable Chem Eng, 2018, 6(6): 8003-8018. DOI: 10.1021/acssuschemeng.8b01448 .

[40]

LAI C, XU F H, ZHANG M M, et al. Facile Synthesis of CeO2/Carbonate Doped Bi2O2CO3 Z-scheme Heterojunction for Improved Visible-light Photocatalytic Performance: Photodegradation of Tetracycline and Photocatalytic Mechanism[J]. J Colloid Interface Sci, 2021, 588: 283-294. DOI: 10.1016/j.jcis.2020.12.073 .

[41]

BUI T S, BANSAL P, LEE B K, et al. Facile Fabrication of Novel Ba-doped G-C3N4 Photocatalyst with Remarkably Enhanced Photocatalytic Activity towards Tetracycline Elimination Under Visible-light Irradiation[J]. Appl Surf Sci, 2020, 506: 144184. DOI: 10.1016/j.apsusc.2019.144184 .

[42]

ZHANG R, ZENG K L. A Novel Flower-like Dual Z-scheme BiSI/Bi2WO6/g-C3N4 Photocatalyst Has Excellent Photocatalytic Activity for the Degradation of Organic Pollutants under Visible Light[J]. Diam Relat Mater, 2021, 115: 108343. DOI: 10.1016/j.diamond.2021.108343 .

[43]

NING B Y, CHEN Z X, CAI Y Q, et al. Simultaneous Photocatalytic Tetracycline Oxidation and Cr(VI) Reduction by Z-scheme Multiple Layer TiO2/SnIn4S8 [J]. Langmuir, 2024, 40(17): 9144-9154. DOI: 10.1021/acs.langmuir.4c00549 .

[44]

SUN H R, GUO F, PAN J J, et al. One-pot Thermal Polymerization Route to Prepare N-deficient Modified G-C3N4 for the Degradation of Tetracycline by the Synergistic Effect of Photocatalysis and Persulfate-based Advanced Oxidation Process[J]. Chem Eng J, 2021, 406: 126844. DOI: 10.1016/j.cej.2020.126844 .

[45]

ZHANG Y Y, HUANG X H, ZHENG Q, et al. Spherical Bi4O5I2/MoS2 QDs Nanocomposites Activate Persulfate to Degrade Tetracycline Under Visible Light[J]. Adv Sustain Syst, 2024, 8(4): 2300439. DOI: 10.1002/adsu.202300439 .

基金资助

山西省基础研究计划项目(202303021222243)

山西省高等学校科技创新计划项目(2023L306)

运城学院校级项目(YQ-2020010)

运城学院校级项目(QZX-2023014)

运城学院校级项目(YQ-2023028)

运城学院校级项目(YY-202512)

AI Summary AI Mindmap
PDF (3548KB)

50

访问

0

被引

详细

导航
相关文章

AI思维导图

/