In order to realize the effective utilization of local tea species, the ultrasonic extraction technology of Dracocephalum rupestre Hance instant black tea was optimized by single factor and orthogonal design, and different drying conditions were compared. Based on the analysis of the components of Dracocephalum rupestre Hance black tea and Dracocephalum rupestre Hance instant black tea, their antioxidant, glucose-lowering and lipid-lowering activities were compared by scavenging free radical DPPH∙, inhibiting alpha-glucosidase and lipase degrading 4-nitrophenyl laurate activities, respectively. The results showed that the optimal extraction temperature, extraction time and ratio of material to water were 70 ℃, 40 min and 1∶40. Freeze-drying was the best drying method in the experiments. The content of polysaccharide was significantly higher, up to 40.32%±0.35%, in instant black tea than that in black tea. They both had antioxidant, glucose-lowering and lipid-lowering activities, and instant black tea is superior to black tea in terms of antioxidant activity(IC50=0.129 mg/mL) and glucose lowering (IC50=0.035 mg/mL) at the experimental concentration.
Beijing Institute of Botany, Chinese Academy of Sciences. Iconographia Cormophytorm Sinicorum[M]. Beijing: Science Press, 1974.
[3]
GAOJ J, WANGZ, CHEND, et al. Metabolomic Characterization of the Chemical Compositions of Dracocephalum rupestre Hance[J]. Food Res Int, 2022, 161: 111871. DOI:10.1016/j.foodres.2022.111871 .
[4]
WUL, JINX, ZHENGC W, et al. Bidirectional Effects of Mao Jian Green Tea and Its Flavonoid Glycosides on Gastrointestinal Motility[J]. Foods, 2023, 12(4): 854. DOI:10.3390/foods12040854 .
[5]
Jiangsu New Medical College, Dictionary of Chinese Traditional Medicine[M]. Shanghai: Shanghai Science and Technology Press, 1977.
[6]
REND M, GUOH F, WANGS Q, et al. Separation and Structure Determination of Two Diastereomeric Pairs of Enantiomers from Dracocephalum rupestre by High-performance Liquid Chromatography with Circular Dichroism Detection[J]. J Chromatogr A, 2007, 1161(1/2): 334-337. DOI:10.1016/j.chroma.2007.06.034 .
[7]
REND M, GUOH F, YUW T, et al. Stereochemistry of Flavonoidal Alkaloids from Dracocephalum rupestre [J]. Phytochemistry, 2008, 69(6): 1425-1433. DOI:10.1016/j.phytochem.2008.01.013 .
[8]
REND M, QUZ, WANGX N, et al. Simultaneous Determination of Nine Major Active Compounds in Dracocephalum rupestre by HPLC[J]. J Pharm Biomed Anal, 2008, 48(5): 1441-1445. DOI:10.1016/j.jpba.2008.09.013 .
[9]
ZHUC S, LIUK, WANGJ L, et al. Antioxidant Activities and Hepatoprotective Potential of Dracocephalum rupestre Hance Extract Against CCl4-induced Hepatotoxicity in Kunming Mice[J]. J Food Biochem, 2018, 42(2): e12484. DOI:10.1111/jfbc.12484 .
[10]
BAND, GESANGZ G, FANY Y, et al. Therapeutic Potential of Compound Extract from Dracocephalum Rupestre Hance and Berberidis Radix Against Salmonella-induced Lamb Diarrhea[J]. Sci Rep, 2024, 14(1): 23789. DOI:10.1038/s41598-024-73034-2 .
[11]
KASHCHENKON I, JAFAROVAG S, ISAEVJ I, et al. Caucasian Dragonheads: Phenolic Compounds, Polysaccharides, and Bioactivity of Dracocephalum austriacum and Dracocephalum botryoides [J]. Plants, 2022, 11(16): 2126. DOI:10.3390/plants11162126 .
[12]
YILMAZ-AKYUZE, USTUN-AYTEKINO, BAYRAMB, et al. Nutrients, Bioactive Compounds, and Health Benefits of Functional and Medicinal Beverages[M]//Nutrients in Beverages. Amsterdam: Elsevier, 2019: 175-235. DOI:10.1016/b978-0-12-816842-4.00006-x .
[13]
ISLAMJ, KABIRY. Effects and Mechanisms of Antioxidant-rich Functional Beverages on Disease Prevention[M]//Functional and Medicinal Beverages. Amsterdam: Elsevier, 2019: 157-198. DOI:10.1016/b978-0-12-816397-9.00005-4 .
[14]
CARVALHO BARROSJ, MUNEKATAP E S, DE CARVALHOF A L, et al. Use of Tiger Nut (Cyperus esculentus L.) Oil Emulsion as Animal Fat Replacement in Beef Burgers[J]. Foods, 2020, 9(1): 44. DOI:10.3390/foods9010044 .
[15]
NIKMARAMN, ROOHINEJADS, HASHEMIS, et al. Emulsion-based Systems for Fabrication of Electrospun Nanofibers: Food, Pharmaceutical and Biomedical Applications[J]. RSC Adv, 2017, 7(46): 28951-28964. DOI:10.1039/c7ra00179g .
[16]
ONI K, UCHEGBUN N, FASUANT O, et al. Development of Instant Tea from Cymbopogon Citrates, Zingiber of and Moringa oleifera Extracts[J]. J Food Meas Charact, 2023, 17(2): 1735-1747. DOI:10.1007/s11694-022-01734-2 .
[17]
SUNY M, WANGY J, HUANGJ, et al. Quality Assessment of Instant Green Tea Using Portable NIR Spectrometer[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 240: 118576. DOI:10.1016/j.saa.2020.118576 .
[18]
ALASALVARC, PELVANE, OZDEMIRK S, et al. Compositional, Nutritional, and Functional Characteristics of Instant Teas Produced from Low- and High-quality Black Teas[J]. J Agric Food Chem, 2013, 61(31): 7529-7536. DOI:10.1021/jf4015137 .
[19]
PELVANE, MUSTAFAÖ. Assessment of Energy and Exergy Efficiencies and Renewability of Black Tea, Instant Tea and Ice Tea Production and Waste Valorization Processes[J]. Sustain Prod Consum, 2017, 12: 59-77. DOI:10.1016/j.spc.2017.05.003 .
[20]
BAIX L, ZHANGL, KANGC Y, et al. Near-infrared Spectroscopy and Machine Learning-based Technique to Predict Quality-related Parameters in Instant Tea[J]. Sci Rep, 2022, 12(1): 3833. DOI:10.1038/s41598-022-07652-z .
[21]
LIANGS, GAOY, FUY Q, et al. Innovative Technologies in Tea-beverage Processing for Quality Improvement[J]. Curr Opin Food Sci, 2022, 47: 100870. DOI:10.1016/j.cofs.2022.100870 .
[22]
KOINAI M, SARIGIANNISY, HAPESHIE. Green Extraction Techniques for the Determination of Active Ingredients in Tea: Current State, Challenges, and Future Perspectives[J]. Separations, 2023, 10(2): 121. DOI:10.3390/separations10020121 .
[23]
NAJIA M, BAŞYIĞITB, ALAŞALVARH, et al. Instant Soluble Roselle (Hibiscus sabdariffa L.) Powder Rich in Bioactive Compounds: Effect of the Production Process on Volatile Compounds[J]. J Food Meas Charact, 2023, 17(1): 108-120. DOI:10.1007/s11694-022-01593-x .
[24]
JINJ C, LIANGS, QIS X, et al. Widely Targeted Metabolomics Reveals the Effect of Different Raw Materials and Drying Methods on the Quality of Instant Tea[J]. Front Nutr, 2023, 10: 1236216. DOI:10.3389/fnut.2023.1236216 .
[25]
KUMARK R, DASHORAK, KUMARS, et al. A Review of Drying Technology in Tea Sector of Industrial, Non-conventional and Renewable Energy Based Drying Systems[J]. Appl Therm Eng, 2023, 224: 120118. DOI:10.1016/j.applthermaleng.2023.120118 .
WUC, LIX Y, WEIX Y, et al. Study on the Extraction Technology of Instant Green Tea Prepared from Tea Fragments[J]. China Tea, 2024, 46(1): 48-53. DOI: 10.3969/j.issn.1000-3150.2024.01.007 .
[28]
AL-HATIMR R, AL-ALNABID I B, AL-YOUNISZ K, et al. Extraction of Tea Polyphenols Based on Orthogonal Test Method and Its Application in Food Preservation[J]. Food Sci Technol, 2022, 42: e70321. DOI:10.1590/fst.70321 .
[29]
JIANGJ, ZHANGM Y, ANT T, et al. Preparation of Instant Dark Tea by Liquid-state Fermentation Using Sequential Inoculation with Eurotium cristatum and Aspergillus Niger: Processes Optimization, Physiochemical Characteristics and Antioxidant Activity[J]. LWT, 2022, 162: 113379. DOI:10.1016/j.lwt.2022.113379 .
[30]
PELALAKR, KHANA, ZAREM H, et al. Extraction of Ingredients from Tea Leaves Using Oxidative Enzymatic Reaction and Optimization of Extraction Conditions[J]. Sci Rep, 2021, 11(1): 4094. DOI:10.1038/s41598-021-83232-x .
[31]
WANGH, WANGJ, MUJUMDARA S, et al. Effects of Postharvest Ripening on Physicochemical Properties, Microstructure, Cell Wall Polysaccharides Contents (Pectin, Hemicellulose, Cellulose) and Nanostructure of Kiwifruit (Actinidia deliciosa)[J]. Food Hydrocoll, 2021, 118: 106808. DOI:10.1016/j.foodhyd.2021.106808 .
[32]
CHENF, HUANGG L, HUANGH L. Preparation, Analysis, Antioxidant Activities in Vivo of Phosphorylated Polysaccharide from Momordica charantia [J]. Carbohydr Polym, 2021, 252: 117179. DOI:10.1016/j.carbpol.2020.117179 .
NIUC W, SONGH Y, GUH, et al. Optimization for the Extraction Process of the Flavonoids from the Hawthorn Leaves by Response Surface Methodology and Evaluation of Hypolipidemic Activity[J]. Food Ind, 2023, 44(2): 19-22.
[35]
XIEH J, LUOX, GAOY, et al. Co-encapsulation of Lactobacillus Plantarum and EGCG: A Promising Strategy to Increase the Stability and Lipid-lowering Activity[J]. Food Hydrocoll, 2024, 151: 109768. DOI:10.1016/j.foodhyd.2024.109768 .
[36]
WANGL, ZHANGB, XIAOJ, et al. Physicochemical, Functional, and Biological Properties of Water-soluble Polysaccharides from Rosa roxburghii Tratt Fruit[J]. Food Chem, 2018, 249: 127-135. DOI:10.1016/j.foodchem.2018.01.011 .
[37]
YANGH R, CHENL H, ZENGY J. Structure, Antioxidant Activity and in Vitro Hypoglycemic Activity of a Polysaccharide Purified from Tricholoma matsutake [J]. Foods, 2021, 10(9): 2184. DOI:10.3390/foods10092184 .
[38]
刘庆红. 速溶茶的审评方法[J]. 中国茶叶, 1988, 10(4): 37.
[39]
LIUQ H. Evaluation Method of Instant Tea[J]. China Tea, 1988, 10(4): 37.
GOLOVINSKAIAO, WANGC K. The Hypoglycemic Potential of Phenolics from Functional Foods and Their Mechanisms[J]. Food Sci Hum Wellness, 2023, 12(4): 986-1007. DOI:10.1016/j.fshw.2022.10.020 .
[43]
DOUJ F, WUC E, FANG J, et al. Insights into the Pigment and Non-pigment Phenolic Profile of Polyphenol Extracts of Jujube Peel and Their Antioxidant and Lipid-lowering Activities[J]. Food Biosci, 2023, 52: 102493. DOI:10.1016/j.fbio.2023.102493 .
[44]
YEN FSOK, QINC S, XUANS T S, et al. Hypoglycemic Effects of Plant Flavonoids: a Review[J]. Evid Based Complement Alternat Med, 2021, 2021: 2057333. DOI:10.1155/2021/2057333 .
[45]
JIX L, GUOJ H, CAOT Z, et al. Review on Mechanisms and Structure-activity Relationship of Hypoglycemic Effects of Polysaccharides from Natural Resources[J]. Food Sci Hum Wellness, 2023, 12(6): 1969-1980. DOI:10.1016/j.fshw.2023.03.017 .
[46]
LIX G, ZHANGF Y, JIANGC X, et al. Structural Analysis, in Vitro Antioxidant and Lipid-lowering Activities of Purified Tremella fuciformis Polysaccharide Fractions[J]. Process Biochem, 2023, 133: 99-108. DOI:10.1016/j.procbio.2023.06.005 .