高性能轧制稀土镁合金研究进展

周桐羽 ,  谢泽峰 ,  王仕超 ,  申翼超 ,  管凯 ,  贾海龙 ,  查敏

材料工程 ›› 2025, Vol. 53 ›› Issue (08) : 1 -12.

PDF (3169KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (08) : 1 -12. DOI: 10.11868/j.issn.1001-4381.2024.000756
先进镁合金专栏

高性能轧制稀土镁合金研究进展

作者信息 +

Research progress in rolled magnesium alloys containing rare earth with high performance

Author information +
文章历史 +
PDF (3244K)

摘要

作为车辆制造、国防等轻量化关键材料,镁合金绝对强度低和室温成形性差等缺点限制了其在相关领域的进一步应用。目前,挤压和轧制是生产高性能镁合金板材的重要手段,而高强塑组织调控是高强韧、高成形性镁合金的关键技术。本文综述了高强韧轧制稀土镁(Mg-RE)合金微观组织及力学性能调控的最新研究进展,重点讨论了从多元合金化成分设计及轧制工艺手段创新等方面调控Mg-RE合金组织,进而改善其成形性和力学性能,并指出未来低成本高强韧镁合金板材的研发需要基于对工艺-组织-性能关系的深入探索,从多元合金化成分设计及短流程高效率轧制工艺角度,为轧制镁合金组织调控和高性能镁合金制备提供借鉴。

Abstract

As the key lightweight materials for vehicle manufacturing and national defense, magnesium alloy’s low absolute strength and poor formability at room temperature limit its further application in related fields. At present, extrusion and rolling are the important means to produce high performance magnesium alloy sheet, and high strength and plastic structure control is the key technology of high strength and toughness and high formability magnesium alloy. In this paper, the latest research progress in microstructure and mechanical properties regulation of high strength and tough rolled rare earth magnesium (Mg-RE) alloy is reviewed. The microstructure regulation of Mg-RE is mainly discussed in terms of multi-component alloying composition design and rolling process innovation, so as to improve the properties of magnesium alloys. It is pointed out that the future research and development of low-cost high strength and toughness magnesium alloy sheet should be based on the in-depth exploration of process-structure-property relationship, which can provide reference for the composition design of rolled magnesium alloy and the preparation of high performance magnesium alloy from the perspectives of multi-component alloying composition design and high efficiency rolling process.

Graphical abstract

关键词

稀土镁合金 / 变形 / 强韧化 / 组织控制

Key words

magnesium alloy containing rare earth / deformation / strengthening and toughening / microstructure control

引用本文

引用格式 ▾
周桐羽,谢泽峰,王仕超,申翼超,管凯,贾海龙,查敏. 高性能轧制稀土镁合金研究进展[J]. 材料工程, 2025, 53(08): 1-12 DOI:10.11868/j.issn.1001-4381.2024.000756

登录浏览全文

4963

注册一个新账户 忘记密码

自21世纪以来,制造业飞速发展导致能源及环境问题日益突出1。镁合金作为最轻的金属结构材料,由于其密度低、比强度和比刚度高、尺寸稳定等优点具有广阔的应用前景2-3。新能源汽车以及航空航天等领域的快速发展对结构材料轻量化提出了更高要求,然而常规镁合金强度低、塑性和高温蠕变性能差,难以满足现阶段结构材料的服役需求,限制了镁合金的工程化应用4-5。合金化是提高镁合金力学性能的主要策略之一,尤其是稀土(rare earth,RE)元素通常在镁中具有较高的极限固溶度,且固溶度随温度降低急剧下降,因此含RE元素的镁合金一般表现出良好的固溶强化及沉淀强化效果。并且RE元素可以有效提高镁合金耐热性、耐蚀性以及抗高温蠕变性6-8。除合金化外,热力耦合加工手段(挤压、轧制等)及其工艺参量也显著影响镁合金的组织和性能,例如通过对轧制工艺的优化调整(选择不同的轧制方式,改变轧制温度、压下量等参量),可以实现对镁合金的组织控制,有效提升合金性能9
本文综述了稀土镁(Mg-RE)合金微观组织和力学性能调控的研究进展,从多元合金化成分(Ce、Y、Sm、Gd元素)设计及轧制工艺手段创新(技术方式及工艺参量)等方面进行了归纳和总结。其中,基于溶质元素偏聚调控和多种合金元素协同作用,能够在添加少量RE元素的条件下,使合金具有与高Mg-RE合金相近的力学性能,显著降低生产成本。在此基础上提出高性能Mg-RE合金的发展方向——低稀土含量合金化设计、组织-性能关系建立、短流程高效率制备,为低成本、高性能Mg-RE合金的设计与可控制备提供参考。

1 稀土元素对镁合金组织及性能的影响

RE是改善镁合金力学性能、耐腐蚀性能及成型性的有效元素,其主要分为两组:轻稀土(light rare earths,LREs)和重稀土(heavy rare earths,HREs)。LREs元素原子序数较低,包括La~Eu;HREs原子序数较高,包括Gd~Lu,以及性质相近的Sc和Y。RE在α-Mg基体中的固溶度相对较大,LREs在α-Mg中的固溶度通常比HREs低,不同的稀土元素对镁合金微观组织和力学性能的影响规律和作用机制也不尽相同10

1.1 Ce元素的影响

稀土Ce元素11在镁基体中具有较低的固溶度(0.52%,质量分数,下同)12,因此极易在晶粒内和晶界处析出13,有效增大晶界滑移阻力,提高镁合金的力学性能(如表1所示14-21)和抗蠕变性能。微量的Ce可使合金的屈服强度(yield strength,YS)、抗拉强度(ultimate tensile strength,UTS)和伸长率(elongation,EL)显著提高。原因是,Ce的添加有利于形成再结晶晶粒,使合金组织细化14-1522。同时,晶粒内部和晶界处产生新的金属间化合物相16-1723,且其体积分数随着Ce含量增加而增加。Fu等18和Li等19研究表明,Mg-Al系合金中添加Ce后,合金部分母相转变为Al-Ce相。但过量Ce元素的添加会导致第二相粗化,合金力学性能提升效果降低17。基于变形行为和织构演化分析,Wu等20和Zhang等21发现,添加适量的Ce元素能够促进合金非基面滑移系的激活,弱化基面织构强度。

除力学性能外,Ce元素对提高镁合金耐腐蚀性能具有重要作用。王熠玮等24研究表明,Ce在Mg-Mn-Ce体系中形成了Mg12Ce化合物,腐蚀过程中膜电阻显著增高,产物膜致密性提高,合金耐腐蚀性能增强,且Ce含量为1.0%时膜电阻最大,耐腐蚀性能最好。随Ce含量增加,AZ91镁合金的腐蚀速率降低25-26

1.2 Y元素的影响

稀土Y元素是镁合金中强化作用最好、应用最广泛、研究最深入的元素之一27。其在镁合金中具有较高的固溶度(12.3%)28,而Mg、Y间晶格参数的显著差异使合金表现出良好的固溶强化效果,提高了镁合金的力学性能,如表2所示29-37

添加微量Y元素,可以使合金激活大量的孪晶、锥面〈c+a〉滑移,改善组织均匀性,提高Mg-Y合金的延展性,同时保持其强度和加工硬化132938-39。原因是,Y元素促进了Mg-RE合金的固溶强化、析出强化和细晶强化2939-40

Yang等29和Maldar等30研究了Mg-Y合金的组织演变和力学性能。与Mg-1%Y合金相比,Mg-5%Y合金的晶粒尺寸更小,第二相更多。溶质Y可以显著降低Mg晶格中沿〈c〉方向的层错能(stacking fault energy,SFE),促进变形过程中〈c〉位错的激活,有利于滑移带附近的小尺寸孪晶形核,显著提高合金塑性。从能量角度,Y元素具有较高的表面活性,能降低强化相表面能,促进形核并改善形貌,抑制其各向异性生长,改性合金力学性能提高31。Qian等32和Zeng等41均向Mg-Sn合金中添加微量Y,并分别从晶体学角度和形核能角度对Mg-Sn-Y合金中动态析出的高密度纳米级Sn3Y5颗粒进行论述,得出相似的结论:Sn3Y5颗粒数密度随着Y含量的增加而增加,抑制了晶界裂纹扩展和位错运动,与细晶强化效果相结合,显著改善了力学性能。

在Mg-Y系合金基础上添加一定量Zn、Cu、Ni等元素,可以形成具有良好热稳定性的长周期堆垛有序相(long-period stacking ordered,LPSO),显著提高镁合金的力学性能和耐热性能。铸态Mg-Y-Zn合金经时效处理后,组织中亚稳态18R-LPSO相转变为了14H-LPSO相42

1.3 Sm元素的影响

在RE元素中,Sm是在镁基体中极限固溶度最大的轻稀土元素,且价格相对低廉。Sm元素可以显著提高镁合金的力学性能和耐热性能,因此受到广泛的关注43-44。部分含Sm镁合金的力学性能如表3所示45-52

Mg-Sm相图中包含五种二元金属间化合物:Mg41Sm5、Mg5Sm、Mg3Sm、Mg2Sm、MgSm53。Jia等54的研究表明,Mg-Sm系中可形成系列稳定相:Mg-(HCP)、Mg41Sm5、Mg5Sm、Mg3Sm、Mg2Sm(Laves-C15)、MgSm(B2)、Sm-(BCC)、Sm-(HCP)、Sm-(rhombohedral)。Guan等55研究发现,Mg-Sm基合金中主要金属间化合物的晶体结构与Sm/Zn原子比相关。在Mg-xSm-0.6%Zn-0.5%Zr合金中,当Sm添加量≤5%时,主要金属间化合物为Zn元素富集的Mg3Sm相,当Sm含量增加到6.5%时,主要金属间化合物为Mg41Sm5相,且晶粒尺寸随Sm含量的增加显著减小。利用TEM和原子分辨率HAADF-STEM对Mg-5%Sm-0.6%Zn-0.5%Zr合金的时效析出行为进行系统分析,发现峰值时效态合金中含有大量的纳米柱面相(β0')和基面相(γ'')(如图1所示)。与固溶态合金相比,时效态合金屈服强度提高60%以上;进一步研究表明,与β0'相比,γ''具有更好的热稳定性56。章桢彦57对Mg-4%Sm-0.4%Zr(S4K)合金的研究表明,200 ℃时效过程中的相演化顺序为S.S.S.S.(cph)→β''(Mg3RE,D019)→β'(Mg3RE,fcc),峰时效态析出相是β''(D019),其是该合金的主要强化相。

基于镁合金变形行为分析,Sm原子添加能够降低〈c+a〉位错的SFE,促进〈c+a〉位错成核并提高其稳定性。合金内〈a〉位错和〈c+a〉位错共存,孪晶与〈c+a〉位错相互作用,有利于激活镁合金的多种滑移变形机制4558。显然,Sm的添加可促进〈c+a〉位错激活,显著改善镁合金的塑性。

1.4 Gd元素的影响

在共晶点温度,Gd在Mg中的极限固溶度为23.5%,且随温度的降低其显著下降(200 ℃时降至3.82%)。Mg-Gd合金是典型的可以通过析出强化的镁合金59。部分含Gd镁合金的力学性能如表4所示4160-65

添加Gd后,合金内产生新的金属间化合物相60-61。砂型铸造Mg-Gd系合金中常见的第二相呈方块状,其数量与合金的冷却速率有关66。Pang等67对比了砂型铸造Mg-Gd-Y-Zr合金在不同冷却速度(0.7~3.6 ℃/s)下的凝固组织,其中方块相的数量随冷却速度的加快而减少。关于方块相的来源及物相鉴定目前仍存在争议,部分研究认为其成分为Mg5(Gd,Y),也有研究认为其成分为Mg2Y3Gd2,但晶体结构均为面心立方(face-centered cubic,FCC),晶格常数a=0.53~0.56 nm68-71

在Mg-Al-Gd三元合金体系中,随着Gd含量逐渐增加,γ相含量降低,18R相和Al2Gd相含量增加72-74。合金在室温和高温下均具有较高的硬度、抗拉强度和屈服强度,这归因于添加Gd诱发的细晶强化和固溶强化。

Luan等75研究表明,当x=2时,Mg-x%Gd-1%Zn-0.5%Mn合金的EL最大(40%)。随着Gd含量进一步增加,形成了由未动态再结晶(undynamic recrystallization,UDRX)晶粒和动态再结晶(dynamic recrystallization,DRX)晶粒组成的异质结构;异构强化、织构强化和细晶强化的综合作用增加了合金强度。Wang等61发现,当Gd含量低于1%时,Mg-4%Zn-0.6%Ca合金的UDRX区域随着Gd含量增加而增大;当含量高于1%时则相反,同时UDRX区域的织构强度随Gd含量的增加而降低。

2 轧制工艺对Mg-RE合金组织及性能的影响

轧制是一种重要的镁合金成形方法,宏观上可以改变板料形状,微观上可以优化其组织,有效提高镁合金的力学性能76-78。然而,镁为密排六方(hexagonal close-packed,HCP)结构,轧制变形过程中易形成强基面织构、强各向异性、易开裂,尤其是含有稀土元素的镁合金,基体中形成的大量热稳定性良好的Mg-RE强化相进一步增加了其加工难度。研究人员通过调整轧制方式及轧制工艺参量(温度、压下量)优化了镁合金组织及性能,以期望获得高性能轧制板材79-89

2.1 轧制工艺参量对Mg-RE合金组织及性能的影响

2.1.1 轧制温度的影响

随着轧制温度升高,合金晶粒逐渐长大,DRX体积分数显著增加79-80,且再结晶晶粒尺寸基本不受轧制温度影响80。但当轧制温度为500 ℃时,DRX体积分数异常下降。主要原因是,500 ℃时Gd偏聚减弱导致〈c+a〉位错成核受到限制,进一步延缓了小角度晶界(low-angle grain boundaries,LAGBs)的形成80

Mg-Li系合金中β-Li相发生DRX;α-Mg相的DRX机制由连续动态再结晶(continuous dynamic recrystallization,CDRX)转变为非连续动态再结晶(discontinuous dynamic recrystallization,DDRX)81-82。合金力学性能的提高来自于细晶强化、位错强化和织构强化的综合作用。Liu等83在不同温度下轧制Mg-12%Gd-1.0%Er-0.5%Zr合金时,在低轧制温度(特别是385 ℃)板材中观察到一种新型链状析出相(由β,βF'(或βT')、尾状“六边形环”层、单个“之”链和单个“六边形环”亚稳相组成84),而450 ℃轧制板材中为传统的无析出链的析出特征,时效后表现出最高的强度,这归因于其致密的β'相(较多)和βHM相(较少)。

2.1.2 轧制压下量的影响

Mg-Li系合金轧制压下量由30%增加至90%时,α-Mg相沿轧制方向拉长,第二相细化,β-Li相的体积分数增加。当压下量为70%时,合金综合力学性能最佳(UTS约为238 MPa,EL约为24%)85

Zheng等86和Xu等87对不同压下量Mg-RE合金的微观结构进行了研究,发现随着压下量的增加,DRX体积分数均增加,但合金基面织构强度的变化趋势相反。Xu等87同时对合金力学性能进行研究,发现合金强度变化较小,但屈服各向异性和延展性得到显著改善。Li等88对挤压态Mg-9%Gd-3%Y-0.5%Zr进行轧制加工,发现每道次压下量为5%时,合金强度逐渐增加,延展性基本不变。每道次压下量为20%时的晶粒细化率略高于5%的,力学性能增加到一定程度后略有下降。

2.2 轧制方式对Mg-RE合金组织及性能的影响

2.2.1 衬板控轧

Mg-RE合金强度和硬度高,但塑性较差,难以通过常规轧制实现大压下量变形。吉林大学轻合金团队开发的衬板控轧技术(hard-plate rolling,HPR)作为一种新型的轧制工艺,近年来受到广泛关注。HPR是指在轧制样品上下表面添加硬质合金薄板,将薄板与样品一同加热并送入轧辊的过程(如图2所示89)。轧制过程中部分剪切力转变为正压力,能够极大提高轧制样品单道次的变形量。

这种新型短流程、高效率室温大压下量HPR方法,单道次可实现约70%压下量90。Zha等91采用HPR技术制备了一种新型WE43合金板材,基于HPR过程中的不均匀变形,混晶结构合金组织的位错滑移和动态析出行为存在差异(小角度晶界LABs:2°≤θ≤15°和大角度晶界HABs:θ≥15°分别以黑白线表示,如图3所示)。细晶(fine grain,FG)区基面滑移占主导地位,稳态β相沿晶界析出;粗晶(coarse grain,CG)区非基面滑移占主导地位,亚稳态β1相在晶内析出,YS高达312 MPa,UTS和EL分别为332 MPa和11.8%,力学性能远高于文献报道的常规WE43合金92-93。高强度主要来自高密度纳米相强化和晶界强化,高塑性来自FG间基面〈a〉位错滑移传递及CG内非基面位错滑移开启。

Zha等94通过大压下量HPR获得同时具有混晶结构和非均匀分布的纳米级γ'相的多级异构Mg-8%Gd-4%Y-1%Zn-0.4%Zr合金,该合金具有高强韧性能(YS为385 MPa,EL为19%)。高YS主要归因于超细晶(ultra-fine grain,UFG)提供的晶界强化,以及CG内基面γ'相与锥面〈c+a〉位错产生的强相互作用。混晶结构镁合金中开启的多重滑移系统、异质变形诱导(hetero-deformation induced,HDI)硬化效果以及γ'相对裂纹扩展的抑制作用,是优异塑性的主要来源。李永康95揭示了衬板控轧Mg-8%Gd-4%Y-1%Zn-0.4%Zr合金的变形行为,经单道次85% HPR变形后,FG区分布大量β相,导致出现位错→LAGBs→HAGBs的转变,并以CDRX方式细化至UFG,促进CG区位错的积累,使强度和塑性同步提升:UTS为420 MPa,EL为20%。

2.2.2 交叉轧制

降低织构强度被认为是一种削弱力学各向异性的有效途径96。研究表明97-98,交叉轧制(cross rolling,CR)合金的织构强度低于单向轧制(unidirectional rolling,UR)合金组构强度,且CR板材具有较低的力学各向异性。

Han等99分别采用UR和CR技术制备了Mg-4.7%Gd-3.4%Y-1.2%Zn-0.5%Zr合金板材,发现LPSO相在两种加工方式下分别呈棒状和片层状。与UR合金相比,CR合金表现出更高的强度,且EL没有明显各向异性。Hu等100研究了UR和CR加工的Mg-6.75%Zn-0.57%Zr-0.4%Y-0.18%Gd板材的微观组织和力学性能。结果表明,与UR板材相比,CR板材呈现出更细的晶粒尺寸、更弱的基面织构、更高的再结晶体积分数和强度,有效地降低了力学性能的各向异性。在此基础上,Lin等96通过CR制备了具有典型基面织构的退火态Mg-6.75%Zn-0.57%Zr-0.4%Y-0.18%Gd板材,其变形机制主要取决于初始晶粒取向,而拉伸过程中的取向演变则与滑移引起的晶格旋转有关。合金的力学性能表现出各向同性,主要原因为退火后的CR板材织构呈同心分布,在不同方向产生了相似的变形机制。与UR相比,CR加工的Mg-Li系板材中I相(Mg3Zn6Y1)破碎并均匀分布,触发PSN机制,FG区比例增加101。因此,CR板材具有更高的强度、延展性以及较弱的力学各向异性。

2.2.3 异步轧制

与对称轧制(symmetric rolling,SR)相比,非对称轧制(asymmetric rolling,ASR)可通过引入剪切变形来改善镁合金的织构。异步轧制(differential speed rolling,DSR)工艺作为ASR的一种,由于上下辊速不同,沿板料厚度方向产生较大的剪切应变,使晶粒细化,基面织构减弱,组织均匀性改善,板材的力学性能优于SR102

王旭等103采用SR和DSR两种轧制方式加工挤压态Mg-Gd-Y-Zn-Zr合金板材,发现与SR板材相比,DSR板材DRX和组织均匀化程度明显增加,织构强度较低,强度、塑性得以提高。随着异速比的增大,产生更多的剪切应变,第二相的破碎程度及弥散程度均有所提高。且板材经过连续剪切变形后,其内部晶粒破碎和扭曲,细化组织的同时促进DRX行为,织构逐渐趋于随机化104-105。Kwak等106对铸态Mg-13%Zn-1.55%Y合金进行高比异步轧制(high-ratio differential speed rolling,HRDSR),促进了UFG组织和高体积分数I相形成。值得一提的是,该合金在较低温度下(473、523 K)表现出优异的超塑性(EL分别为455%、1021%)。其原因可能是晶界滑移和位错攀移蠕变机制的相互竞争。但当温度超过523 K时,晶粒迅速粗化,导致超塑性丧失。

3 结束语

目前,对轧制镁合金的研究主要集中于Mg-Al、Mg-Zn系合金,而耐热、高强Mg-RE合金则由于其成型性较差而研究报道相对较少,特别是对高性能Mg-RE合金轧制工艺参数-合金组织-力学性能间关系规律亟需进一步探索。今后可从以下三方面开展相关工作:

(1)研发新型低成本、高性能Mg-RE合金。从合金成分设计方面,目前已有许多研究揭示了RE元素的添加能够显著提高镁合金性能。然而RE元素通常价格高昂,不利于高性能Mg-RE合金的广泛应用。最近的研究表明,多种微量RE元素协同作用,匹配合适创新的加工手段,可以在低稀土含量添加下达到与高稀土含量添加镁合金相当的力学性能,显著降低原材料成本。因此,对低成本、高性能Mg-RE合金的开发将成为研究热点。

(2)深入研究轧制Mg-RE合金组织-性能关系。目前对挤压变形过程中镁合金组织和织构演变规律的报道较多,而对轧制Mg-RE合金的研究相对较少,缺乏工艺参量-合金组织-力学性能关系方面的探讨。因此,今后需进一步对轧制Mg-RE合金进行深度表征,特别是探索适合于Mg-RE合金的新型轧制手段及工艺参量,如轧制温度、压下量对组织演化的影响规律,为开发新型轧制技术并优化轧制工艺参量提供理论依据。

(3)开发高性能Mg-RE合金短流程高效轧制工艺。将多元微合金成分设计、新型轧制技术与其他成形工艺相结合,协同提升Mg-RE合金成形性与力学性能,提高加工效率和成品率,降低高性能Mg-RE合金成本,充分发挥镁合金的潜力,致力于开发出适应不同服役环境、更多系列的高强度、高塑性Mg-RE合金,以满足我国航空航天、交通运输以及电子通讯等行业发展对镁合金的需求,促进镁合金的产业化应用。

参考文献

[1]

MORDIKE B LEBERT T. Magnesium properties-applications-potential[J]. Materials Science and Engineering:A2001302 (1): 37-45.

[2]

丁文江, 吴玉娟, 彭立明, . 高性能镁合金研究及应用的新进展[J]. 中国材料进展201029 (8): 37-45.

[3]

DING W JWU Y JPENG L Met al. Research and application development of advanced magnesium alloys[J]. Materials China201029 (8): 37-45.

[4]

张丁非, 彭建, 丁培道, . 镁及镁合金的资源、应用及其发展现状[J]. 材料导报200418(4): 72-76.

[5]

ZHANG D FPENG JDING P Det al. The resource, application of magnesium and its alloys and the current development[J]. Materials Reports200418(4): 72-76.

[6]

HE S MZENG X QPENG L Met al. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy[J]. Journal of Alloys and Compounds2007, 427 (1/2): 316-323.

[7]

JIA J XSONG GATRENS A. Boundary element method predictions of the influence of the electrolyte on the galvanic corrosion of AZ91D coupled to steel[J]. Materials and Corrosion200556 (4): 259-270.

[8]

陈先华, 耿玉晓, 刘娟. 镁及镁合金功能材料的研究进展[J]. 材料科学与工程学报201331 (1): 148-152.

[9]

CHEN X HGENG Y XLIU J. Research status of magnesium alloys as functional materials[J]. Journal of Materials Science & Engineering201331 (1): 148-152.

[10]

张静, 潘复生, 李忠盛. 耐热镁合金材料的研究和应用现状[J]. 铸造200453(10): 770-774.

[11]

ZHANG JPAN F SLI Z S. Status of research and application of heat resistant magnesium alloys[J]. Foundry200453(10): 770-774.

[12]

WANG S QZHA MJIA H Let al. A review of superplastic magnesium alloys: focusing on alloying strategy, grain structure control and deformation mechanisms[J]. Journal of Materials Science & Technology2025211: 303-319.

[13]

赵磊杰, 马立峰, 韩廷状, . 变形镁合金轧制成形研究进展[J]. 材料导报202034 (21): 21135-21145.

[14]

ZHAO L JMA L FHAN T Zet al. Research progress of wrought magnesium alloy rolling forming[J]. Materials Reports202034 (21): 21135-21145.

[15]

罗晓东, 张德洲, 陈小雨, . 稀土元素改善镁合金组织性能研究进展[J]. 中国稀土学报202341 (2): 244-255.

[16]

LUO X DZHANG D ZCHEN X Yet al. Research progress of rare earth element in improving microstructure and properties of magnesium alloys[J]. Journal of the Chinese Society of Rare Earths202341 (2): 244-255.

[17]

PAULICK HMACHACEK E. The global rare earth element exploration boom: an analysis of resources outside of China and discussion of development perspectives[J]. Resources Policy201752: 134-153.

[18]

ZHANG XKEVORKOV DPEKGULERYUZ M O. Study on the binary intermetallic compounds in the Mg-Ce system[J]. Intermetallics200917 (7): 496-503.

[19]

陈燕飞. 高丰度稀土元素Ce和Y对镁合金的强化机制研究[D]. 南昌:南昌大学, 2024.

[20]

CHEN Y F. Study on the strengthening mechanism of high abundance rare-earth elements Ce and Y in magnesium alloys[D]. Nanchang: Nanchang University, 2024.

[21]

MISHRA R KGUPTA A KRAO P Ret al. Influence of cerium on the texture and ductility of magnesium extrusions[J]. Scripta Materialia200859 (5): 562-565.

[22]

HU BZHU W JLI Z Xet al. Effects of Ce content on the modification of Mg2Si phase in Mg-5Al-2Si alloy[J]. Journal of Magnesium and Alloys202311 (7): 2299-2311.

[23]

ÖZARSLAN SŞEVIK HSORAR İ. Microstructure, mechanical and corrosion properties of novel Mg-Sn-Ce alloys produced by high pressure die casting[J]. Materials Science and Engineering: C2019105: 110064.

[24]

CHAI Y FHE CJIANG Bet al. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. Journal of Materials Science & Technology202037: 26-37.

[25]

FU TSUN X YGE C Cet al. Achieving high strength-ductility synergy in dilute Mg-Al-Ca alloy by trace Ce addition[J]. Journal of Alloys and Compounds2022917: 165407.

[26]

LI J SLI M XHUA Z Met al. Effect of micro-alloyed Ce on the microstructure evolution and mechanical properties of rolled Mg-0.6Al-0.5Mn-0.2Ca alloy sheets[J]. Journal of Materials Research and Technology202219: 3088-3099.

[27]

WU H FHU W XMA S Bet al. Effect of Ce on microstructure and mechanical properties of Mg-Zn-Ce magnesium alloys[J]. China Foundry202320 (4): 271-279.

[28]

ZHANG S LFAN Y HZHAO H Let al. A comparative study on the effect of 0.5 wt% Ca or Ce on the microstructure, texture, and mechanical properties of the hot-rolled Mg-4Li alloy[J]. Materials Today Communications202439: 108540.

[29]

李权, 彭建, 蒋显全, . Ce和均匀化对Mg-2.0Zn-1.0Mn镁合金组织和性能的影响[J]. 功能材料201445 (): 64-67.

[30]

LI QPENG JJIANG X Qet al. Effect of Ce and homogeneous annealing on microstructure and deformation performance of Mg-2.0Zn-1.0Mn alloy[J]. Journal of Functional Materials201445 (): 64-67.

[31]

陈燕飞, 朱政强, 汪光鑫. 基于第一性原理研究稀土Ce对镁合金的强化机制[J]. 稀有金属材料与工程202251 (10): 3762-3776.

[32]

CHEN Y FZHU Z QWANG G X. Strengthening mechanism of rare earth Ce on magnesium alloy based on first-principle calculations[J]. Rare Metal Materials and Engineering202251 (10): 3762-3776.

[33]

王熠玮, 郭锋, 胡文鑫, . 稀土元素Ce、Y在Mg-Mn-RE镁合金腐蚀中的作用及其差异[J]. 表面技术202352 (9): 232-240.

[34]

WANG Y WGUO FHU W Xet al. Effects and difference of Ce and Y on corrosion behaviors of Mg-Mn-RE magnesium alloys[J]. Surface Technology202352 (9): 232-240.

[35]

于万海, 曹景升, 王明友. 稀土元素Ce对汽车用新型镁合金显微组织和腐蚀性的影响[J]. 热加工工艺201544 (12): 71-73.

[36]

YU W HCAO J SWANG M Y. Effect of impurity element content on microstructure and property of 7075 Al alloy[J]. Hot Working Technology201544 (12): 71-73.

[37]

WAN D Q. Improvement of corrosion resistance of magnesium alloy by Ce addition and high cooling rate[J]. Rare Metal Materials and Engineering201241: 47-49.

[38]

王浩宇. Mg-Y及Mg-Gd-Y系稀土镁合金350 ℃等温氧化行为研究[D]. 长沙: 中南大学, 2023.

[39]

WANG H Y. Isothermal oxidation behavior of Mg-Y and Mg-Gd-Y rare earth magnesium alloys at 350 ℃[D]. Changsha: Central South University, 2023.

[40]

SUDHOLZ A DGUSIEVA KCHEN X Bet al. Electrochemical behaviour and corrosion of Mg-Y alloys[J]. Corrosion Science201153 (6): 2277-2282.

[41]

YANG WQUAN G FJI Bet al. Effect of Y content and equal channel angular pressing on the microstructure, texture and mechanical property of extruded Mg-Y alloys[J]. Journal of Magnesium and Alloys202210 (1): 195-208.

[42]

MALDAR AWANG L YLIU B Yet al. Activation of dislocations in Mg with solute Y[J]. Journal of Magnesium and Alloys202412 (3): 1045-1053.

[43]

范晋平, 蒋一锋, 裴镖, . Y对Mg-14Al-5Si合金性能的影响[J]. 材料研究学报202236 (3): 213-219.

[44]

FAN J PJIANG Y FPEI Bet al. Effect of Y on properties of Mg-14Al-5Si alloy[J]. Chinese Journal of Materials Research202236 (3): 213-219.

[45]

QIAN X YZENG YJIANG Bet al. Grain refinement mechanism and improved mechanical properties in Mg-Sn alloy with trace Y addition[J]. Journal of Alloys and Compounds2020820: 153122.

[46]

LI J SZHONG L PWANG J Let al. Synergistic improvement of mechanical and electromagnetic shielding properties of a Mg-Li-Y-Zn alloy following heat treatment[J]. Journal of Magnesium and Alloys202513 (3): 1243-1257.

[47]

WANG Y HYAO HZHAO Y Cet al. Improvement of mechanical properties and corrosion resistance of as-extruded Mg-2Zn-2Al-0.3Mn alloy through Y addition[J]. Advanced Engineering Materials202527 (1): 2402093.

[48]

毕广利, 满宏生, 姜静, . 挤压Mg-Y-Ni-Co合金的显微组织和力学性能[J]. 中国有色金属学报202333 (4): 1011-1023.

[49]

BI G LMAN H SJIANG Jet al. Microstructure and mechanical properties of extruded Mg-Y-Ni-Co alloy[J]. The Chinese Journal of Nonferrous Metals202333 (4): 1011-1023.

[50]

毕广利, 许浩彬, 姜静, . 复合加工Mg-Y-Zn-Ni合金的显微组织和性能[J]. 特种铸造及有色合金202444 (4): 433-440.

[51]

BI G LXU H BJIANG Jet al. Microstructures and properties of Mg-Y-Zn-Ni alloy by combined machining[J]. Special Casting & Nonferrous Alloys202444 (4): 433-440.

[52]

BI G LZHANG N MJIANG Jet al. Microstructure and yield phenomenon of an extruded Mg-Y-Cu alloy with LPSO phase[J]. Journal of Rare Earths202341 (3): 454-461.

[53]

SANDLÖBES SZAEFFERER SSCHESTAKOW Iet al. On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys[J]. Acta Materialia201159 (2): 429-439.

[54]

ZHA MLIU J MJIA H Let al. Novel Mg-Al-Sn-Zn-Y alloys with enhanced strength-ductility combination prepared by hard-plate rolling[J]. Advanced Engineering Materials202123 (10): 2100419.

[55]

SU NWU Q YDING C Yet al. Effect of Y and Gd solutes on grain refinement of the as-extruded Mg-Gd(-Y)-Zn-Mn alloys[J]. Journal of Alloys and Compounds2023968: 171804.

[56]

ZENG YSUN K XQIAN X Yet al. Achieving advanced elevated-temperature strength by tailoring precipitates in Mg-Sn-Y alloys[J]. Journal of Alloys and Compounds2022924: 166644.

[57]

ASADI A HKALAYEH P MMIRZADEH Het al. Precipitation kinetics and mechanical properties of Mg-Y-Zn and Mg-Y-Ni alloys containing long-period stacking ordered (LPSO) structures[J]. Journal of Materials Research and Technology202324: 9513-9522.

[58]

LIU F LFANG L YLI Z Yet al. Diffusion characteristics and mechanical properties of Mg-Sm system[J]. Journal of Materials Research and Technology202429: 924-932.

[59]

GUAN KLI B SYANG Qet al. Effects of 1.5 wt% samarium (Sm) addition on microstructures and tensile properties of a Mg-6.0Zn-0.5Zr alloy[J]. Journal of Alloys and Compounds2018735: 1737-1749.

[60]

ZENG Z HPAN H CPAN Zet al. Effect of Sm and Ce content on microstructure and mechanical property of newly developed Mg-Sm-Ce-Mn based alloy[J]. Materials Characterization2023206: 113420.

[61]

杨来东, 李全安, 陈晓亚, . Mg-Sm系镁合金的研究进展[J]. 材料导报202236 (7): 192-200.

[62]

YANG L DLI Q ACHEN X Yet al. Recent advance of Mg-Sm system alloys[J]. Materials Reports202236 (7): 192-200.

[63]

OU X QLIU F YTAN Cet al. Effect of precipitates in Mg-Sm alloys on their deformation behavior and yield asymmetry[J]. Advanced Engineering Materials202224 (4): 2101063.

[64]

GUAN KMA RZHANG J Het al. Modifying microstructures and tensile properties of Mg-Sm based alloy via extrusion ratio[J].Journal of Magnesium and Alloys20219(3):1098-1109.

[65]

GUAN KYANG QBU F Qet al. Microstructures and mechanical properties of a high-strength Mg-3.5Sm-0.6Zn-0.5Zr alloy[J]. Materials Science and Engineering: A2017703: 97-107.

[66]

HUANG YPAN H CPAN Zet al. Effect of pre-stretching on enhancing yield strength of as-extruded Mg-Sm-Ce based alloy[J]. Journal of Alloys and Compounds2023968: 171869.

[67]

秦成, 车朝杰, 程丽任, . 铸态Mg-Sm-Gd-Zn-Zr合金微观组织与力学性能研究[J]. 中国稀土学报202139 (3): 523-530.

[68]

QIN CCHE C JCHENG L Ret al. Microstructure and mechanical properties of as-cast Mg-Sm-Gd-Zn-Zr alloy[J]. Journal of the Chinese Society of Rare Earths202139 (3): 523-530.

[69]

YAN Z XYANG QMA Ret al. Effects of Sm addition on microstructure evolutions and mechanical properties of high-strength Mg-Gd-Sm-Zr extruded alloys[J]. Materials Science and Engineering: A2022831: 142264.

[70]

陈振华. 镁合金[M]. 北京: 化学工业出版社, 2004.

[71]

CHEN Z H. Magnesium alloy[M]. Beijing: Chemical Industry Press, 2004.

[72]

JIA B RLIU L BYI D Qet al. Thermodynamic assessment of the Al-Mg-Sm system[J]. Journal of Alloys and Compounds2008, 459 (1/2): 267-273.

[73]

GUAN KMENG F ZQIN P Fet al. Effects of samarium content on microstructure and mechanical properties of Mg-0.5Zn-0.5Zr alloy[J]. Journal of Materials Science & Technology201935 (7): 1368-1377.

[74]

GUAN KLI CYANG Z Zet al. Hardening effect and precipitation evolution of an isothermal aged Mg-Sm based alloy[J]. Journal of Magnesium and Alloys202311 (12): 4619-4627.

[75]

章桢彦. Mg(-Gd)-Sm-Zr合金的微观组织、力学性能和析出相变研究[D]. 上海:上海交通大学, 2013.

[76]

ZHANG Z Y. Study on the microstructure, mechanical properties and precipitated phase transformations of Mg(-Gd)-Sm-Zr alloys[D]. Shanghai: Shanghai Jiao Tong University, 2013.

[77]

GUI Y WCUI Y JBIAN H Ket al. Deformation behavior of Mg-5Y-2Nd-0.5Zr alloys with different Sm additions[J]. Journal of Alloys and Compounds2021856: 158201.

[78]

ZHENG JCHEN ZYAN Z Met al. An alternating ageing-annealing process for enhancing strength and ductility of a Mg-Gd-Y-Zn-Zr alloy[J]. Materials Science and Engineering: A2021828: 142103.

[79]

CI W JDENG L LCHEN X Het al. Effect of minor Gd addition on microstructure, mechanical performance, and corrosion behavior of Mg-Y-Gd alloys[J]. Journal of Materials Research and Technology202326: 4107-4120.

[80]

WANG CLI H RGUO E Yet al. The effect of Gd on the microstructure evolution and mechanical properties of Mg-4Zn-0.6Ca alloy[J]. Materials Science and Engineering: A2023868: 144756.

[81]

古东懂, 杨欢, 伍文兴, . 预拉伸和时效处理对挤压态Mg-Gd合金组织和力学性能的影响[J]. 材料热处理学报202445 (2): 71-77.

[82]

GU D DYANG HWU W Xet al. Effect of pre-stretching and aging treatment on microstructure and mechanical properties of extruded Mg-Gd alloy[J]. Transactions of Materials and Heat Treatment202445 (2): 71-77.

[83]

LI JJIN LWANG F Let al. Microscopic and mesoscopic deformation behaviors of dual-phase Mg-Li-Gd alloys[J]. Journal of Materials Science & Technology2024194: 1-15.

[84]

何上明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[D]. 上海:上海交通大学, 2007.

[85]

HE S M. Study on the microstructural evolution, properties and fracture behavior of Mg-Gd-Y-Zr(-Ca) alloys[D]. Shanghai: Shanghai Jiao Tong University, 2007.

[86]

BAO JLI Q ACHEN X Yet al. Microstructure and mechanical properties of moderate-speed extrudable Mg-Gd-Sm-Zr alloy[J]. Materials Research Express20218 (9): 096501.

[87]

庞松, 华溪如, 陶静雅, . 固溶处理Mg-Gd系铸造镁合金的研究现状及展望[J]. 特种铸造及有色合金202343 (3): 318-324.

[88]

PANG SHUA X RTAO J Yet al. Research progress and prospect of solution treated Mg-Gd casting alloys[J]. Special Casting & Nonferrous Alloys202343 (3): 318-324.

[89]

PANG SWU G HLIU W Cet al. Effect of cooling rate on the microstructure and mechanical properties of sand-casting Mg-10Gd-3Y-0.5Zr magnesium alloy[J]. Materials Science and Engineering: A2013562: 152-160.

[90]

陈巧旺. 低Gd含量Mg-Gd系铸造镁合金的组织与性能研究[D]. 重庆:重庆大学, 2018.

[91]

CHEN Q W. Microstructure and mechanical properties of casting Mg-Gd based alloys with low content of Gd[D]. Chongqing: Chongqing University, 2018.

[92]

曾小勤, 吴玉娟, 彭立明, . Mg-Gd-Zn-Zr合金中的LPSO结构和时效相[J]. 金属学报201046(9): 1041-1046.

[93]

ZENG X QWU Y JPENG L Met al. LPSO structure and aging phases in Mg-Gd-Zn-Zr alloy[J]. Acta Metallurgica Sinica201046 (9): 1041-1046.

[94]

WU Y JZENG X QLIN D Let al. The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773 K[J]. Journal of Alloys and Compounds2009, 477 (1/2): 193-197.

[95]

GAO YWANG Q DGU J Het al. Behavior of Mg-15Gd-5Y-0.5Zr alloy during solution heat treatment from 500 to 540 ℃[J]. Materials Science and Engineering:A2007459 (1): 117-123.

[96]

QIU C LLIU S HHUANG J Het al. Phase equilibria and solidification behavior of Mg-Al-Gd casting alloys[J]. Transactions of Nonferrous Metals Society of China202434 (4): 1091-1109.

[97]

CHEN HZHANG KYAO C Wet al. Effect of Al2Gd on microstructure and properties of laser clad Mg-Al-Gd coatings[J]. Applied Surface Science2015330: 393-404.

[98]

ATHUL K RSRINIVASAN APILLAI U T S. Investigations on the microstructure, mechanical, corrosion and wear properties of Mg-9Al-xGd (0, 0.5, 1, and 2 wt%) alloys[J]. Journal of Materials Research201732 (19): 3732-3743.

[99]

LUAN S YCHEN L JZHANG Let al. The strength contribution via heterostructure in a Mg-Gd-Zn-Mn alloy[J]. Materials Characterization2024214: 114119.

[100]

GUO FZHANG D FYANG X Set al. Effect of rolling speed on microstructure and mechanical properties of AZ31 Mg alloys rolled with a wide thickness reduction range[J]. Materials Science and Engineering: A2014619: 66-72.

[101]

WANG W KCUI G RZHANG W Cet al. Evolution of microstructure, texture and mechanical properties of ZK60 magnesium alloy in a single rolling pass[J]. Materials Science and Engineering: A2018724: 486-492.

[102]

GUO FZHANG DFAN X Wet al. Deformation behavior of AZ31 Mg alloys sheet during large strain hot rolling process: a study on microstructure and texture evolutions of an intermediate-rolled sheet[J]. Journal of Alloys and Compounds2016663: 140-147.

[103]

LIU J BZHANG KHAN J Tet al. Microstructure and texture evolution of Mg-7Y-1Nd-0.5Zr alloy sheets with different rolling temperatures[J]. Rare Metals202039 (11): 1273-1278.

[104]

LI C XYAN HCHEN R S. Microstructure and texture evolution of Mg-14Gd-0.5Zr alloy during rolling and annealing under different temperatures[J]. Acta Metallurgica Sinica (English Letters)202336 (1): 61-76.

[105]

ZHONG FWANG YWU R Zet al. Effect of rolling temperature on deformation behavior and mechanical properties of Mg-8Li-1Al-0.6Y-0.6Ce alloy[J]. Journal of Alloys and Compounds2020831: 154765.

[106]

LI X YGUO FMA Y Let al. Rolling texture development in a dual-phase Mg-Li alloy: the role of temperature[J]. Journal of Magnesium and Alloys202311 (8): 2980-2990.

[107]

LIU KHU D LLOU Fet al. Effects of deformation temperatures on microstructures, aging behaviors and mechanical properties of Mg-Gd-Er-Zr alloys fabricated by hard-plate rolling[J]. Journal of Magnesium and Alloys202412 (6): 2345-2359.

[108]

LIU KLOU FYU Z Jet al. Microstructures and mechanical properties of Mg-6Gd-1Er-0.5Zr alloy sheets produced with different rolling temperatures[J]. Journal of Alloys and Compounds2022893: 162213.

[109]

ZHONG FZHANG SWU R Zet al. Effects of rolling reductions on microstructure evolution and mechanical properties of Mg-8Li-1Al-0.6Y-0.6Ce alloy[J]. Advanced Engineering Materials202325(10): 2201716.

[110]

ZHENG Y QZHANG YLIU Yet al. Microstructure characteristics and corrosion behaviors of Mg-2Zn-2Er-0.3Zr-0.3Mn alloy under various rolling reductions[J]. Metals202212 (2): 365.

[111]

XU CZHENG M YWU Ket al. Effect of final rolling reduction on the microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloy sheets[J]. Materials Science and Engineering: A2013559: 232-240.

[112]

LI S QTANG W NCHEN R Set al. Effect of rolling reduction on microstructure and mechanical properties of Mg-9Gd-3Y-0.5Zr alloys[J]. Materials Science Forum2013747/748: 223-229.

[113]

WANG H YYU Z PZHANG Let al. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process[J]. Scientific Reports20155 (1): 17100.

[114]

WANG KWANG J FPENG Xet al. Microstructure and mechanical properties of Mg-Gd-Y-Zn-Mn alloy sheets processed by large-strain high-efficiency rolling[J]. Materials Science and Engineering: A2019748: 100-107.

[115]

ZHA MMA XJIA H Let al. Dynamic precipitation and deformation behaviors of a bimodal-grained WE43 alloy with enhanced mechanical properties[J]. International Journal of Plasticity2023167: 103682.

[116]

HUANG X SSUZUKI KCHINO Y. Static recrystallization and mechanical properties of Mg-4Y-3RE magnesium alloy sheet processed by differential speed rolling at 823 K[J]. Materials Science and Engineering: A2012538: 281-287.

[117]

JAHEDI MMCWILLIAMS B A, MOY P, et al. Deformation twinning in rolled WE43-T5 rare earth magnesium alloy: influence on strain hardening and texture evolution[J]. Acta Materialia2017131: 221-232.

[118]

ZHA MWANG S QWANG Tet al. Developing high-strength and ductile Mg-Gd-Y-Zn-Zr alloy sheet via bimodal grain structure coupling with heterogeneously-distributed precipitates[J]. Materials Research Letters202311 (9): 772-780.

[119]

李永康. 混晶结构镁合金组织调控及强塑性提升机制[D]. 长春: 吉林大学, 2022.

[120]

LI Y K. Microstructural control and mechanisms of enhanced strength and ductility of bimodal-grained magnesium alloys[D]. Changchun: Jilin University, 2022.

[121]

LIN XCHEN Z YSHAO J Bet al. Deformation mechanism, orientation evolution and mechanical properties of annealed cross-rolled Mg-Zn-Zr-Y-Gd sheet during tension[J]. Journal of Magnesium and Alloys202311 (7): 2340-2350.

[122]

CHEN TCHEN Z YYI Let al. Effects of texture on anisotropy of mechanical properties in annealed Mg-0.6%Zr-1.0%Cd sheets by unidirectional and cross rolling[J]. Materials Science and Engineering: A2014615: 324-330.

[123]

CHEN HHAN Y XLIU C Met al. Effect of unidirectional rolling and cross-rolling on microstructure and mechanical anisotropy of Mg-Gd-Y-Ag-Zr plates[J]. Journal of Alloys and Compounds2023960: 170680.

[124]

HAN Y XCHEN S YWAN Y Cet al. Microstructure, texture evolution and mechanical anisotropy of Mg-Gd-Y-Zn-Zr alloy sheets produced by unidirectional and cross rolling[J]. Materials Science and Engineering: A2024893: 146127.

[125]

HU ZCHEN Z YXIONG J Yet al. Microstructure and mechanical properties of Mg-6.75%Zn-0.57%Zr-0.4%Y-0.18%Gd sheets by unidirectional and cross rolling[J]. Materials Science and Engineering: A2016662: 519-527.

[126]

WANG D LXU D KWANG B Jet al. Effect of cross rolling on the microstructure and mechanical performance of a dual-phase structured Mg-8Li-6Zn-1Y (in wt.%) alloy[J]. Journal of Materials Science & Technology2024176: 132-144.

[127]

REN X WHUANG Y CZHANG X Yet al. Influence of shear deformation during asymmetric rolling on the microstructure, texture, and mechanical properties of the AZ31B magnesium alloy sheet[J]. Materials Science and Engineering: A2021800: 140306.

[128]

王旭, 黄元春, 王强, . 异步轧制对Mg-Gd-Y-Zn-Zr板材组织、织构和性能的影响[J]. 稀有金属202347 (7): 934-941.

[129]

WANG XHUANG Y CWANG Qet al. Microstructure, texture and mechanical properties of Mg-Gd-Y-Zn-Zr sheet with different rolling speed[J]. Chinese Journal of Rare Metals202347 (7): 934-941.

[130]

宋旭东, 袁鸽成, 黎小辉, . 异步轧制Mg-3Zn-2(Ce/La)-1Mn合金的微观组织及织构演变[J]. 金属热处理202045 (2): 1-6.

[131]

SONG X DYUAN G CLI X Het al. Microstructure and texture evolution of differential speed rolled Mg-3Zn-2(Ce/La)- 1Mn alloy[J]. Heat Treatment of Metals202045 (2): 1-6.

[132]

KWAK T YLIM H KHAN S Het al. Refinement of the icosahedral quasicrystalline phase and the grain size of Mg-9.25Zn-1.66Y alloy by high-ratio differential speed rolling[J]. Scripta Materialia2015103: 49-52.

[133]

KWAK T YKIM W J. Superplastic behavior of an ultrafine-grained Mg-13Zn-1.55Y alloy with a high volume fraction of icosahedral phases prepared by high-ratio differential speed rolling[J]. Journal of Materials Science & Technology201733 (9): 919-925.

基金资助

国家自然科学基金资助项目(52234009)

AI Summary AI Mindmap
PDF (3169KB)

286

访问

0

被引

详细

导航
相关文章

AI思维导图

/