Sm对镁合金结构和功能性能影响的研究进展

刘峰 ,  胡文鑫 ,  杨正华 ,  郭贺 ,  何伟 ,  王玮

材料工程 ›› 2025, Vol. 53 ›› Issue (08) : 13 -26.

PDF (3692KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (08) : 13 -26. DOI: 10.11868/j.issn.1001-4381.2023.000863
先进镁合金专栏

Sm对镁合金结构和功能性能影响的研究进展

作者信息 +

Research progress in effects of Sm on structural and functional properties of magnesium alloys

Author information +
文章历史 +
PDF (3780K)

摘要

镁合金是一种在汽车、轨道交通及航空航天等领域极具应用潜力的轻量化金属材料,可以为国家制造业的绿色低碳发展提供坚定支撑。然而,传统镁合金存在绝对强度低、室温塑性差、抗腐蚀性能及热导率低等缺点,而稀土元素是改善镁合金结构和功能性能的重要合金元素。本文综述了钐(Sm)对镁合金的力学性能、耐腐蚀性能和导热性能的影响规律,从溶质原子、金属间化合物、析出相及稀土织构等方面系统地阐释了Sm在镁合金中的作用机制,并针对含Sm镁合金未来的研发方向提出以下策略:探究Sm对镁合金高温力学性能的影响及作用机制;通过优化成分和热处理工艺等途径调控微电偶腐蚀阴极反应过程,提高耐腐蚀性能;开展孪晶、位错及织构等对含Sm镁合金导热性能影响的研究,并建立相应的预测模型。

Abstract

Magnesium alloy is a lightweight metallic material with huge potential for application in automobile, rail transit and aerospace, it can provide a solid support for the green and low-carbon development of China’s manufacturing industry. However, Traditional magnesium alloys have disadvantages such as low absolute strength, poor room temperature plasticity, low corrosion resistance and thermal conductivity. The rare earth(RE) elements are indispensable for enhancing the structural and functional properties of magnesium alloys. This paper reviews the effect of samarium (Sm) on mechanical properties, corrosion resistance and thermal conductivity of magnesium alloys. The mechanisms through which Sm influences magnesium alloys are systematically elucidated from various perspectives, including solute atoms, intermetallic compounds, precipitates, and RE textures. For the future development of magnesium alloys containing Sm, the following strategies are proposed: investigating the impact of Sm on the mechanical properties of magnesium alloys at elevated temperatures; optimizing composition and heat treatment to control microgalvanic cathodic reactions and enhance corrosion resistance; conducting research on the effects of twins, dislocations, and textures on the thermal conductivity of magnesium alloys containing Sm, and establishing corresponding prediction models.

Graphical abstract

关键词

镁合金 / 稀土元素 / 力学性能 / 微电偶腐蚀 / 热导率

Key words

magnesium alloy / rare earth element / mechanical property / microgalvanic corrosion / thermal conductivity

引用本文

引用格式 ▾
刘峰,胡文鑫,杨正华,郭贺,何伟,王玮. Sm对镁合金结构和功能性能影响的研究进展[J]. 材料工程, 2025, 53(08): 13-26 DOI:10.11868/j.issn.1001-4381.2023.000863

登录浏览全文

4963

注册一个新账户 忘记密码

镁合金被誉为“21世纪的绿色工程材料”,其密度约为铝合金的2/3、钢的1/4,是一种重要的轻量化金属材料。镁合金以其低密度、高比强度和良好电磁屏蔽性能等优势,在轨道交通、航空航天、生物医学和3C产业等领域展现出巨大的应用潜力,对于实现“双碳”目标具有重要意义1-4。然而,相比钢铁和铝合金等材料,目前以AZ91和AM60为代表的传统商用镁合金存在强度低、易腐蚀和导热性能差等问题,严重阻碍了镁合金在工程领域的推广应用5-7。添加合金元素是改善镁合金性能的一种有效途径。稀土元素具有独特的核外电子排布,在镁中有较大的极限固溶度,可以通过固溶强化、细晶强化、沉淀强化和第二相强化等方式有效改善镁合金的力学性能8,因此,稀土元素在提升镁合金性能方面有着巨大的应用潜力。
稀土元素是元素周期表中镧系元素和钪、钇共17种金属元素的总称。一般情况下,按照稀土元素的物理、化学性质及分离工艺等差别,稀土元素可以被划分为轻稀土元素(light rare earth, LRE)和重稀土元素(heavy rare earth, HRE)两类,其中,轻稀土元素包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)和铕(Eu),重稀土元素包括钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钇(Y)和钪(Sc)。由于轻稀土元素在镁中的极限固溶度低于大部分重稀土元素,因此,在早期的研究中,人们主要采用向镁合金中添加昂贵的Gd和Y等重稀土元素的方式来强化镁合金的力学性能。随着稀土镁合金研究的不断深入,价格更为低廉的轻稀土元素Sm在镁合金中的优异作用越来越受到人们的关注9-10。Sm在镁中的极限固溶度为5.7%(质量分数,下同),为轻稀土元素中极限固溶度最大的元素。Mg-Sm二元相图中,Mg41Sm5是富镁侧的唯一稳定析出相,该相通过共晶反应获得,对镁合金起到晶界强化的效果。此外,Sm元素在镁中的固溶度会随着温度的下降而减小:5.7%(540 ℃)→4.3%(500 ℃)→1.8%(400 ℃)→0.8%(300 ℃)→0.4%(200 ℃),在时效阶段,富Sm析出相的种类多样,形态分布各异11,这些析出相会对镁合金的结构和功能特性产生重要影响。
本文综述了近年来关于Sm在改善镁合金强韧性、耐腐蚀性和导热性等方面的应用及研究进展,重点讨论了Sm对镁合金结构和功能性能的作用机制,并展望了未来含Sm镁合金的研究方向,期望为高性能含Sm镁合金的开发提供思路,促进稀土Sm资源在镁合金中的平衡应用。

1 时效析出研究

通常认为,Mg-LRE合金的时效析出顺序为:过饱和固溶体(super saturated solid solution, S.S.S.S)→β''(D019,Mg3RE)→βs' (bco, Mg7RE)→β1(fcc, Mg3RE)→β (bct, Mg12RE)。近些年来,随着表征技术的发展,人们对Mg-Sm系合金在时效阶段的析出相结构及演变过程有了更为深入的认识,这对于高性能Mg-Sm系合金的成分设计和析出相调控具有重要指导意义。

借助高角环形暗场扫描透射电子显微镜,可以从原子尺度研究Mg-Sm合金的等温时效析出过程。不同的时效状态下,Mg-2.5Sm合金的组织中会形成多种新的析出相。在欠时效状态下,合金中存在βL,βH和β'三种均匀分散的原子尺度稀土团簇形核机制,其示意图如图1所示12。这些在0.5 h短时效过程中形成的团簇能够发挥显著的强化效果:在峰时效态时,主要的强化结构是由zig-zag线重复单元和六边形重复单元组成的针状析出相;在过时效态,针状析出相会变粗大,一部分析出相转变为β1析出相。总体上看,合金中主要的强化结构是细小的针状析出相和均匀分散的形核结构,粗化的针状析出相和β1析出相会降低合金的力学性能。

以往普遍认为Mg-LRE合金在时效后期会形成β相Mg12RE13-14。近些年,Xie等15在研究Mg-3Sm合金长时间等温时效过程中提出了不同的观点,认为β相应为面心立方结构的Mg5Sm相,该透镜状的β相具有{101¯0}α惯习面,与α-Mg基体呈完全共格关系,β相、β1相和α-Mg基体的取向关系为(11¯1)β∥(11¯1)β1∥(112¯0)α,[110]β∥[110]β1∥[0001]α。此外,Cd元素的添加可以促使合金在柱面上形成高密度、纳米尺寸的吉尼尔·普林斯顿(Guinier-Preston,GP)区,这些富含Sm和Cd元素的二维GP区具有3个不同的{101¯0}惯习面,并且与α-Mg基体完全共格16

Zn元素可以促使Mg-RE-Zr合金呈现出更好的时效强化效果,合金的时效行为会随着Zn含量的变化而改变。对于Mg-4Sm-xZn-0.4Zr(x=0, 0.3, 0.6, 1.3)合金,当Zn含量低于1%时,合金在时效阶段沉淀相的析出顺序为:S.S.S.S→G.P. Zones Ⅰ,Ⅱ→βH', βz'→β1;当Zn含量大于1%时,合金中主要的沉淀强化相是位于基面的针状γ系析出相γ''。γ相的析出顺序为:S.S.S.S→溶质原子团簇→γ''→γ'(→堆垛层错)→γ''。其中,γ''为有序的六角形GP区,a=0.556 nm,c=0.414 nm,γ'是由多层γ''组成。动力学研究表明,淬火空位对于溶质团簇的形成具有重要作用,γ''和γ'相的生长主要由扩散控制,γ'相在现存的γ''相附近形核17。对于Mg-5Sm-0.6Zn-0.5Zr合金,200 ℃/10 h的时效处理后,除了在{111¯0}α晶面上形成β0'相(正交晶系,a=0.642 nm, b=3.336 nm, c=0.521 nm)外,基面上还产生一定数量的γ''相(六方晶系,a=0.556 nm, c=0.431 nm)。基面γ''相比柱面β0'相具有更好的热稳定性,随着时效时间的延长,β0'相逐渐粗化,很容易转变为β1相(面心立方,a=0.73 nm)18

2 Sm对镁合金力学性能的影响

稀土元素Sm可以通过细晶强化、固溶强化和沉淀强化等方式显著改善镁合金的力学性能19-21。目前,Sm对镁合金力学性能影响的研究主要集中在以下体系:Mg-Sm系、Mg-Al-Sm系、Mg-Zn-Sm系,以及Sm与其他稀土元素复合添加形成的Mg-RE-Sm系。

2.1 Mg-Sm系

不同状态下Mg-Sm系合金的室温力学性能如表1所示22-37。与Gd和Y等昂贵的稀土元素相比,Sm的价格低廉,能在镁合金中发挥显著的力学强化效果,因此,深入研究Mg-Sm系合金的强化机制,对于开发低成本、高强韧稀土镁合金具有重要现实意义。

晶粒细化是提升镁合金强韧性的重要途径。Zr作为Mg-Sm合金中一种常用的晶粒细化剂,通常以Mg-Zr中间合金的形式引入38-42。然而,Mg-Zr中间合金的价格昂贵、利用率较低。近些年来,Al元素对Mg-Sm合金的显著晶粒细化效果引起了人们的极大关注23。晶粒细化机制主要为:Al2Sm粒子成为α-Mg基体形核时的有效核心,两者之间的取向关系为(1¯11)Al2Sm∥(0002)Mg,[1¯2¯1]Al2Sm∥[112¯0]Mg,[01¯1]Al2Sm∥[011¯0]Mg。经过3%Al细化后的铸态Mg-4Sm合金,其晶粒尺寸减小到32 μm,优于0.5%Zr细化后的效果(48 μm),合金的极限抗拉强度和伸长率得到同步提升。此外,Ca元素也可以对Mg-Sm合金的晶粒尺寸起到细化作用,铸态Mg-4Sm-1Ca合金的晶粒尺寸为45 μm,这是由于棒状Mg2Ca相作为了α-Mg基体的形核衬底43。经过热挤压和时效处理后,Mg-4Sm-1Ca合金的晶粒尺寸进一步减小到5.1 μm,其抗拉强度、屈服强度和伸长率分别达到267,189 MPa和24%25

向Mg-Sm合金中添加另外一种或多种稀土元素,可以与Sm发挥协同强化的作用。在热挤压态Mg-Sm-Ce-Mn合金中,随着Sm和Ce含量的增加,组织中形成高密度的微米和纳米尺度的第二相,同时,由于Sm在晶界处的偏聚,提升再结晶比例,细化动态再结晶晶粒,并且对织构起到很好的弱化作用,因此,合金的强度和塑性得到同步提升,热挤压态Mg-1.6Sm-0.8Ce-0.4Mn合金的屈服强度与伸长率分别达到269 MPa和21%26。对热挤压后的合金进行预拉伸,可以进一步提高合金的力学性能。热挤压态Mg-1.6Sm-0.4Ce合金经过约15%的预拉伸应变后,合金的屈服强度提高了84 MPa,在预拉伸过程中由于晶粒转动形成的典型基面织构所产生的织构强化,以及高密度位错的形成对屈服强度的提升发挥了重要作用27

基于Zn元素对Mg-RE-Zr合金时效强化过程的促进作用,人们对不同状态下Mg-Sm-Zn-Zr合金的力学性能开展了较为深入的研究。铸态Mg-3Sm-0.5Zn-0.4Zr合金中,细小的片状第二相密度大,间隔小,位于基体柱面上,能够阻碍基面位错的滑移过程。同时,离异共晶的Mg41Sm5相可以强化晶界,有效抑制晶界处裂纹的萌生28

热挤压是提高镁合金力学性能的一种有效途径。对Mg-4Sm-0.6Zn-0.4Zr合金进行300 ℃低温挤压后,合金的屈服强度超过450 MPa,高于大部分挤压态Mg-HRE合金,图2为其沿挤压方向(extrusion direction, ED)的微观组织,挤压后合金组织中细小再结晶晶粒和热加工强织构晶粒组成的双峰结构是合金获得较高强度的重要原因29,此外,挤压过程中动态析出的Mg3Sm相还发挥了第二相强化作用。

挤压比会显著影响Mg-3.33Sm-0.55Zn-0.46Zr合金的动态再结晶过程。当挤压比较小时,合金的晶粒尺寸细小,大量破碎粒子分布在基体上,在变形过程中会产生钉扎效应,阻碍晶界和位错的运动,提高强度。当沿着挤压方向拉伸时,(0001)纤维织构会提高基面滑移的激活应力,从而有效提升强度。随着挤压比由6.9提高到17.6,合金的动态再结晶比例增加,晶粒尺寸粗化,基面纤维织构弱化,导致合金的强度下降和伸长率增加30。借助“热挤压+时效”方式可以进一步提升Mg-Sm-Zn-Zr合金的力学性能。对Mg-3.5Sm-0.6Zn-0.5Zr合金进行“热挤压+时效”处理后,基体中析出大量弥散细小的纳米尺度薄片状β''和板状β'相,这些纳米析出相为合金贡献了约85 MPa的强度31

相比Mg-Gd和Mg-Y系合金,由于Sm在镁基体中的固溶度较小,Mg-Sm-Zn-Zr合金的时效强化效果不足。为了进一步提高其强化效果,通常会选择向Mg-Sm-Zn-Zr合金中加入另外一种稀土元素,尤其是重稀土元素44-45。铸态Mg-2.6Sm-1.3Gd-0.6Zn-0.5Zr合金经过固溶和时效处理后,基体柱面上析出弥散细小的β'相,有效提升合金的力学性能,与相同状态下的WE43合金相比,其抗拉强度和屈服强度分别提高了12.8%和12.1%34。对该成分合金进行热挤压会产生完全动态再结晶并形成稀土织构,使合金的强度和伸长率得到同步提升,进一步的时效处理会促使基体柱面上形成β'相,从而提高合金的屈服强度35

2.2 Mg-Al-Sm系

Mg-Al系合金是目前应用较为广泛的一种镁合金体系,向Mg-Al合金中添加稀土元素可以改善合金的耐热性能。这主要是由于Mg-Al合金中存在β-Mg17Al12相,该相在高温下会发生软化,不能有效阻碍晶界滑移。通过向其中添加稀土元素,可以使β-Mg17Al12相转变为具有高温热稳定性的Al-RE相,从而提高合金在高温下的力学性能46-49

高压压铸是生产镁合金产品常用的一种高效成型方式。相比传统的AE44合金,高压压铸态Mg-4Al-4Sm-0.3Mn合金具有更高的屈服强度和伸长率,比AE44分别提高了约6%和193%。这主要是由于高压压铸态Mg-4Al-4Sm-0.3Mn合金中形成了金属间化合物Al2Sm强化相50。对高压压铸态Mg-4Al-5.6Sm-0.3Mn合金进行150~225 ℃的时效处理,在α-Mg晶粒内部和共晶区域会析出大量纳米尺度的球形Al3Sm强化相,合金的室温屈服强度由未时效前的160 MPa提高到182 MPa,150 ℃高温下的屈服强度由未时效前的115 MPa提高到126 MPa51表2对Mg-Al-Sm系合金的室温和高温力学性能进行了汇总50-56

向Mg-5Al-0.3Mn合金中添加Sm元素,合金组织中β-Mg17Al12相的含量降低,晶粒尺寸细化,此外,还形成了高热稳定性的Al11Sm3和Al2Sm相,这些析出相对位错运动和晶界滑移起到很好的阻碍作用。150 ℃高温条件下Mg-5Al-0.3Mn-2Sm合金的抗拉强度、屈服强度和伸长率相比Mg-5Al-0.3Mn合金分别提高了17%,48%和96%52。Sm含量会影响Mg-Al-Zn-Mn合金凝固过程中α-Mg晶粒的形核及第二相的种类、数量和分布,从而改变合金的力学性能。当Sm含量为0.16%~1.18%时,由于成分过冷的减小,Mg-3Al-1Zn-0.3Mn(AZ31)合金的晶粒尺寸发生明显粗化,拉伸性能下降;当Sm含量高于2.17%时,由于组织中Al2Sm粒子的晶粒细化作用和Al11Sm3相的晶界强化作用,合金的强度逐步提升;当Sm含量为3.13%时,合金获得最优的拉伸性能53。近期的研究表明,0.2%的Sm可以对Mg-8Al-0.3Zn-0.35Mn(AZ80)合金中的α-Mg晶粒和β-Mg17Al12相同时产生细化作用,如图3所示54。细化机制为:凝固过程中形成的Al8Mn4Sm分别与α-Mg、β-Mg17Al12相之间具有良好的晶体学匹配关系,可以作为α-Mg和β-Mg17Al12相形核时的异质核心,提高形核率。

2.3 Mg-RE-Sm系

重稀土元素Gd和Y在镁中的极限固溶度较大,分别为23.3%和12%,且固溶度随着温度的变化而发生改变。因此,含Gd(或Y)的Mg-RE-Zr合金具有显著的沉淀强化效果,是目前研究较为广泛的一类高强稀土镁合金。通过向Mg-Gd (Y)-Zr合金中添加Sm元素,可以调控合金的析出动力学过程,从而获得最优的沉淀强化效果57。该类合金在室温下的力学性能如表3所示58-65。近些年对于Mg-RE-Sm系合金力学性能的研究,主要关注富稀土第二相及热挤压动态再结晶过程。

Mg-Gd-Sm-Zr合金的析出动力学介于Mg-Gd合金和Mg-Sm合金之间,峰时效态的Mg-6.21Gd-4.18Sm-0.38Zr合金,其屈服强度和抗拉强度均优于传统的WE54合金58。研究表明,Sm可以促进挤压态Mg-Gd-Zr合金的动态再结晶过程,形成更多细小再结晶晶粒和低密度织构。此外,Sm的添加还可以提升挤压态Mg-Gd-Zr合金非再结晶区域动态析出相的数量,从而发挥晶界强化和动态析出强化作用。Mg-13.54Gd-1.03Sm-0.39Zr合金经过挤压和时效后,合金的屈服强度和抗拉强度高达495 MPa和519 MPa59

铸态Mg-4Y-4Sm-0.5Zr合金组织中会形成Mg5(Sm0.6Y0.4)共晶相,峰时效态下,{112¯0}α柱面上析出板状的底心正交结构β'相,对沉淀强化起着重要作用60。在Mg-Y-Sm合金中添加适量的Al元素,由于合金元素之间的交互作用,组织中形成Al2(Y,Sm)和Al11(Y, Sm)3相,Al2(Y, Sm)相作为异质核心,对α-Mg晶粒起到很好的细化作用,合金的晶粒尺寸由(435.6±80) μm减小到(43.5±6) μm,抗拉强度和伸长率分别提高了27.1%和148.1%61。对Mg-6.91Y-4.21Sm-0.6Zn-0.19Zr合金进行简单的单步热挤压,可以获得近乎完全再结晶的超细晶组织,平均晶粒尺寸为0.93 μm,细小弥散的Mg5(Y, Sm, Zn)相及合金元素在晶界处的偏析对动态再结晶晶粒的粗化过程起到很好的阻碍作用,合金的抗拉强度达到379 MPa62

2.4 Mg-Zn-Sm系

以Mg-6Zn-0.5Zr(ZK60)为代表的Mg-Zn-Zr合金具有良好的室温力学性能,是一种广泛应用的变形镁合金。然而,与Mg-Gd-Y-Zr系列合金相比,ZK60合金的强度仍显不足。向ZK60合金中添加稀土元素可以进一步提高合金在室温和高温下的强度66-70表4汇总了Mg-Zn-Sm系合金的室温和高温力学性能71-76。可以看出,铸态Mg-Zn-Sm系合金具有良好的伸长率,但抗拉强度维持在较低的水平71-73。然而,对于挤压态合金,其动态再结晶晶粒尺寸明显减小,且分布更加均匀。此外,Sm还能促使ZK60合金中棒状的MgZn2相转变为球形的Mg22Zn64Sm14相和含Sm的MgZn2相,这些析出相具有很高的热稳定性,能够通过阻碍位错运动和钉扎晶界滑移有效提升合金的高温强度74-75

3 Sm对镁合金耐腐蚀性能的影响

镁合金的主要腐蚀机制为微电偶腐蚀,添加合金元素是提升镁合金耐腐蚀性能的一种重要途径77-79。通过调控稀土元素的添加量及其在镁合金中的存在形态,可以改变镁合金的微电偶腐蚀程度,形成表面保护膜,进而降低镁合金的腐蚀速率,改善耐腐蚀性能80-81

镁合金成分和组织的均匀性对其耐腐蚀性能有着重要影响。Mg-4Sm合金经过高电流脉冲电子束表面处理后,大尺寸的Mg41Sm5偏析相发生溶解,形成纳米Mg41Sm5析出相和孪晶。通过电化学动电位极化曲线和交流阻抗测试,经15个脉冲处理过的Mg-4Sm合金具有最低的腐蚀电流密度、最高的腐蚀电位和极化电阻,这主要是由于经过足够数量的高电流脉冲电子束处理后,合金表面呈现出均匀的成分和微观结构,组织缺陷明显减少82

Mg-Sm二元合金的耐腐蚀性能较差,向Mg-Sm合金中添加Al元素后,组织中会形成Al11Sm3和Al2Sm两种Al-Sm相,这两种稀土相会对合金耐腐蚀性能产生不同的影响:Al11Sm3相能够与镁基体构成微电偶,显著加速合金的腐蚀;Al2Sm相能够促进异质形核,细化晶粒,随着Al含量的升高,Al2Sm相形成铝氧化物表面保护层,从而提升合金的耐腐蚀性能83。向Mg-3Sm-0.5Zr合金中添加Ho元素后,合金的晶粒尺寸减小;对合金进行固溶处理可以溶解组织中的第二相,提升合金的腐蚀电位;进行时效处理,则可以使基体中均匀分布Mg41Sm5相和Mg24Ho5相,这些第二相可以降低微电偶腐蚀,改善合金的耐腐蚀性能84

Mg41Sm5相是Mg-Sm系合金中的一种常见析出相,该相的形貌及尺寸对铸态和挤压态Mg-6.1Sm-0.55Zn-0.16Zr合金耐腐蚀性能有着重要影响。铸态合金中,网状的Mg41Sm5相作为阴极,与Mg基体相邻处发生严重的局部腐蚀。然而,经过热挤压后,网状的Mg41Sm5相会破碎为均匀分布的细小颗粒,如图4所示85,在合金表面形成均匀的保护层,可以有效减轻局部腐蚀,提高合金的耐腐蚀性能。挤压态Mg-6.1Sm-0.55Zn-0.16Zr合金的耐腐蚀性能优于传统商用AZ91镁合金。对挤压态Mg-6.1Sm-0.55Zn-0.16Zr合金进行520 ℃/12 h的固溶处理,并将其置于0.6 mol·L-1 NaCl溶液中进行腐蚀时,合金表面会形成具有优异耐腐蚀性能的准钝化膜,膜层由外层、中间层和富Zn层组成,溶质Sm的氧化对中间层起到强化作用,这对耐腐蚀性能的提升发挥了主要作用。相比未进行热处理的挤压态合金,经过热处理后,合金的腐蚀速率降低了50%86

Sm对传统AZ系镁合金的耐腐蚀性能也有着显著的影响。相比未添加Sm的AZ31合金,热挤压态AZ31-1.5Sm镁合金横向和纵向(分别对应垂直和平行于挤压方向)截面的腐蚀电位分别提高了98 mV和62 mV,横向和纵向截面的电荷转移电阻分别由1764、1756 Ω·cm2提高到2928、2408 Ω·cm2。耐腐蚀性能提升的主要原因是,Sm的添加使得挤压态AZ31镁合金的晶粒发生细化,降低位错密度,此外,Al-Sm-(Mn)金属间化合物抑制微电偶的腐蚀87。向AZ91镁合金中添加Sm,会形成Al2Sm和Al-Mn-Sm化合物,β-Mg17Al12相的形貌由粗大网状转变为细小短棒状,Sm的添加减小了β-Mg17Al12相的面积百分比。由于Al2Sm相的腐蚀电位正于β-Mg17Al12相,Al2Sm相作为持久局部阴极,从而提升AZ91镁合金的耐腐蚀性能88

Sm可以改善热轧态Mg-8Sn-1Al-1Zn合金的耐腐蚀性能。在0.6 mol·L-1 NaCl溶液中浸入72 h后,Mg-8Sn-1Al-1Zn-0.02Sm合金的腐蚀速率由未添加Sm前的19 mm·a-1降低到2.7 mm·a-1。这主要是由于,经过Sm微合金化后,合金组织中的Al5Fe2相转变为Al8Fe4Sm相,如图5所示89。Al8Fe4Sm相的电位负于Al5Fe2相,因此,降低析氢速率使合金的耐腐蚀性得到改善。不同状态下含Sm镁合金的腐蚀速率、腐蚀电位和腐蚀电流密度如表5所示82-89

4 Sm对镁合金导热性能的影响

热导率是表征材料导热性能的一个重要参数。由于热在固体中的传递是通过点阵振动波(声子)和自由电子得以实现,因此,镁合金中的溶质原子、金属间化合物、晶界、位错及温度等均会对其导热性能产生影响90-93。近些年关于Sm对镁合金导热性能的影响研究也主要围绕以上几个因素展开。表6汇总了一些含Sm镁合金在不同温度下的热导率94-97

在铸态Mg-Sm二元合金中,当Sm含量为0%~5%时,Mg41Sm5金属间化合物以片状的形态随机分布在镁基体中,当Sm含量增加到11%时,金属间化合物变得明显粗大。Mg-Sm合金的热导率呈现随Sm含量增加而降低的趋势,铸态Mg-1Sm合金的热导率为139.1 W/(m·K),而铸态Mg-11Sm合金的热导率仅为63.9 W/(m·K)94。这主要是由于随着Sm含量的增加,α-Mg基体中Sm溶质的含量及富Sm金属间化合物增多,而Sm溶质原子和富Sm金属间化合物是影响Mg-Sm合金室温热导率的主要因素,两者均会降低镁合金的热导率。

向Mg-4Sm合金中添加不同含量(0%~2.6%)的Al元素,可以有效提升合金的导热性能,如图6所示95。当Al的含量为1.5%时,合金的热导率高达136.8 W/(m·K),热导率提升的主要原因是合金元素Al促使组织中形成Al2Sm和Al11Sm3相,消耗大量镁基体中固溶的Sm溶质原子,降低晶格畸变。基于多层碳纳米管对镁基体中热传导途径的优化作用,向Mg-4Sm-2Al合金中添加多层碳纳米管,可以制备具有超高热导率(158 W/(m·K))的镁基复合材料96

Sm对ZK30和AZ31镁合金的热导率有着显著的影响,添加0.5%~2%的Sm可以提高以上两种合金的热导率97。X射线衍射分析表明,AZ31-2Sm镁合金的晶格畸变程度(0.51%)高于ZK30-2Sm合金(0.21%)。总体上,含Sm的挤压态ZK30镁合金热导率要高于AZ31镁合金。Sm提高ZK30和AZ31镁合金热导率的原因为,富Sm稀土相的形成消耗了镁基体中大量的溶质原子,减小晶格畸变程度,有利于热量的传递。

5 结束语

镁合金作为结构和功能材料,在诸多领域展示出巨大的应用潜力,受到广泛关注。稀土元素是改善镁合金结构及功能性能的有效合金元素。为了加快镁合金的产业化推广及应用,迫切需要开发出高性能、低成本的稀土镁合金材料。Sm作为一种储量丰富、价格较为低廉的轻稀土元素,如何精确调控Sm与其他合金元素的含量,进而开发出新型低成本、高性能含Sm镁合金,具有重要的现实意义。基于近些年的研究成果,未来高性能含Sm镁合金的成分设计和研发可以从以下3个方面进行发展和完善:

(1)前期的研究工作大多集中于Sm对镁合金室温力学性能的影响,基于稀土元素在改善镁合金高温力学性能方面的潜在应用价值,进一步探索Sm对镁合金高温力学性能的影响及作用机制,对于实现镁合金材料在高温服役条件下的应用具有重要意义。此外,需拓宽Sm在其他镁合金体系中的应用研究,如Mg-Sn,Mg-Ca,Mg-Ag等体系。

(2)调控镁合金的微观组织是提升镁合金耐腐蚀性能的有效途径。为了获得具有高耐腐蚀性能的含Sm稀土镁合金,需进一步筛选合金或微合金元素种类,并配以合适的热处理工艺,消除或减缓富Sm稀土相的电偶腐蚀阴极效应,从而抑制阴极析氢反应,降低腐蚀速率。

(3)加大对含Sm镁合金导热性能的研究。Sm对镁合金导热性能的影响因素较多,在关注Sm溶质原子和富Sm金属间化合物的同时,深入探究孪晶、位错及织构等对含Sm镁合金导热性能的影响,并建立相应的预测模型,可加快高导热含Sm镁合金的研发进程。

参考文献

[1]

OVRI HMARKMANN JBARTHEL Jet al. Mechanistic origin of the enhanced strength and ductility in Mg-rare earth alloys[J]. Acta Materialia2023244:118550.

[2]

WANG JLI Y YYUAN Yet al. Tailoring the corrosion behavior and mechanism of Mg-Gd-Zn alloys via Sc microalloying[J]. Journal of Materials Research and Technology202327:5010-5028.

[3]

JIN Z ZZHA MWANG S Qet al. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility[J]. Journal of Magnesium and Alloys202210:1191-1206.

[4]

曾小勤,陈义文,王静雅,. 高性能稀土镁合金研究新进展[J]. 中国有色金属学报202111 (31): 2963-2975.

[5]

ZENG X QCHEN Y WWANG J Yet al. Research progress of high-performance rare earth magnesium alloys[J]. The Chinese Journal of Nonferrous Metals202111 (31):2963-2975.

[6]

CI W JCHEN X HDAI Xet al. Achieving ultra-high corrosion-resistant Mg-Zn-Sc alloys by forming Sc-assisted protective corrosion product film[J]. Journal of Materials Science and Technology2024181:138-151.

[7]

DENG D YCHENG R JJIANG Bet al. The main strengthening phases transformation and their strengthening mechanisms in as-cast Mg-Gd-(Y)-Zn alloys:a review[J]. Journal of Alloys and Compounds2023968:171782.

[8]

XIANG C CHUANG ZWANG Z Jet al. Effect of Cu addition on the microstructure, mechanical properties and thermal properties of Mg-Al-Ca-Mn alloy[J]. Materials Characterization2023202:113028.

[9]

XIE J SZHANG J HYOU Z Het al. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying[J]. Journal of Magnesium and Alloys20219:41-56.

[10]

WANG TLIU F. Multiscale thermo-kinetic characterization for β' and β1 precipitation in Mg-Sm alloys[J]. Acta Materialia2023254:119011.

[11]

ZHANG ZZHANG J HXIE J Set al. Significantly enhanced grain boundary Zn and Ca co-segregation of dilute Mg alloy via trace Sm addition[J]. Materials Science and Engineering:A2022831: 142259.

[12]

XIA X YSUN W HLUO A Aet al. Precipitation sequence and kinetics in a Mg-4Sm-1Zn-0.4Zr (wt%) alloy[J]. Journal of Alloys and Compounds2015649:649-655.

[13]

ZHENG J XZHOU W MCHEN B. Precipitation in Mg-Sm binary alloy during isothermal ageing: atomic-scale insights from scanning transmission electron microscopy[J]. Materials Science and Engineering:A2016669:304-311.

[14]

ISSA ASAAL J EWOLVERTON C. Formation of high-strength β' precipitates in Mg-RE alloys: the role of the Mg/β'' interfacial instability[J]. Acta Materialia201583:75-83.

[15]

NIE J F. Precipitation and hardening in magnesium alloys[J]. Metallurgical and Materials Transactions A201243:3891-3939.

[16]

XIE H BLIU B SBAI J Yet al. Re-recognition of the aging precipitation behavior in the Mg-Sm binary alloy[J]. Journal of Alloys and Compounds2020814:152320.

[17]

XIE H BLOU W XZHAO X Bet al. Enhanced age-hardening response of the Mg-Sm alloy via alloying with Cd[J]. Materials Characterization2020170:110669.

[18]

XIA X YSUN W HLUO A Aet al. Precipitation evolution and hardening in Mg-Sm-Zn-Zr alloys[J]. Acta Materialia2016111:335-347.

[19]

GUAN KLI CYANG Z Z. Hardening effect and precipitation evolution of an isothermal aged Mg-Sm based alloy[J]. Journal of Magnesium and Alloys202311:4619-4627.

[20]

LI Y FZHANG ALI C Met al. Recent advances of high strength Mg-RE alloys: alloy development, forming and application[J]. Journal of Materials Research and Technology202326:2919-2940.

[21]

LIU X HLI Y SMAN Yet al. Precipitation and recrystallization of HPT-processed Mg-Sm-Ca alloy at low temperatures[J]. Materials Letters2020277:128252.

[22]

PEI Y BYUAN MWEI E Bet al. Effects of Sm element addition on the workability and microstructure evolution of Mg-Gd-Y-Zr alloy during hot deformation[J]. Materials & Design2023230:111962.

[23]

YUAN MHE CDONG Z Het al. Effect of Sm addition on the microstructure and mechanical properties of Mg-xSm-0.4Zr alloys[J]. Journal of Materials Research and Technology202323:4814-4827.

[24]

WANG C LDAI J CLIU W Cet al. Effect of Al additions on grain refinement and mechanical properties of Mg-Sm alloys[J]. Journal of Alloys and Compounds2015620:172-179.

[25]

LUO X PFANG D QLI Q Set al. Microstructure and mechanical properties of an Mg-4.0Sm-1.0Ca alloy during thermomechanical treatment[J]. Journal of Rare Earths201634:1134-1138.

[26]

CHAI Y SGAO Z GCAI K Let al. Microstructure and mechanical properties of extruded Mg-Sm-Ca alloys[J]. Rare Metal Materials and Engineering201645 (2):287-291.

[27]

ZENG Z HPAN H CPAN Zet al. Effect of Sm and Ce content on microstructure and mechanical property of newly developed Mg-Sm-Ce-Mn based alloy[J]. Materials Characterization2023206:113420.

[28]

HUANG YPAN H CPAN Zet al. Effect of pre-stretching on enhancing yield strength of as-extruded Mg-Sm-Ce based alloy[J]. Journal of Alloys and Compounds2023968:171869.

[29]

LUKYANOVA E AROKHLIN L LDOBATKINA T Vet al. Structure and mechanical properties of deformed Mg-Sm-Tb-Zr alloys[J]. Russian Metallurgy(Metally)20232023: 1226-1232.

[30]

ZHANG D DPAN H CLI J Get al. Fabrication of exceptionally high-strength Mg-4Sm-0.6Zn-0.4Zr alloy via low-temperature extrusion[J]. Materials Science and Engineering:A2022833:142565.

[31]

GUAN KMA RZHANG J Het al. Modifying microstructures and tensile properties of Mg-Sm based alloy via extrusion ratio[J]. Journal of Magnesium and Alloys20219:1098-1109.

[32]

GUAN KYANG QBU F Qet al. Microstructures and mechanical properties of a high-strength Mg-3.5Sm-0.6Zn-0.5Zr alloy[J]. Materials Science and Engineering:A2017703:97-107.

[33]

LIU KZHAO S CWANG Z Wet al. Effect of Nd on the microstructure and mechanical properties of hot extruded Mg-2.0Sm-0.4Zn-0.4Zr alloy[J]. Journal of Materials Engineering and Performance202231 (6):4369-4374.

[34]

GUAN KZHANG J HYANG Qet al. Effects of trace Ca addition on microstructure and mechanical properties of as-cast Mg-Sm-Gd-based alloy[J]. Transaction of Nonferrous Metals Society of China202333:46-58.

[35]

YUAN MZHENG Z Q. Microstructure and mechanical properties of a Mg-Sm-Gd-Zn-Zr alloy processed by heat treatment[J]. Metallography, Microstructure, and Analysis201431:131-137.

[36]

YUAN MHE CZHAO Jet al. Microstructure evolution and mechanical properties of the Mg-Sm-Gd-Zn-Zr alloy during extrusion[J]. Journal of Materials Research and Technology202125:2518-2528.

[37]

GUAN KEGUSA D,ABE E,et al. Microstructures and mechanical properties of as-cast Mg-Sm-Zn-Zr alloys with varying Gd contents[J]. Journal of Magnesium and Alloys202210:1220-1234.

[38]

ZHANG D DSUN X YPAN H Cet al. Role of Yb in enhancing the heat resistance of cast Mg-Sm-Zn alloy[J]. Materials Science and Engineering:A2022841:143009.

[39]

ZHANG D DYANG QLI B Set al. Improvement on both strength and ductility of Mg-Sm-Zn-Zr casting alloy via Yb addition[J]. Journal of Alloys and Compounds2019805:811-821.

[40]

CAO G JZHU NZHAO S Cet al. Evolution of the hardening precipitates with an enclosed structure in pre-deformed Mg-Sm-Nd-Zn-Zr alloy[J]. Materials Letters2019246:117-120.

[41]

ZHANG D PZHANG J HZHANG Y Qet al. Creep behavior and microstructure evolution of heat-resistant Mg-Sm-Yb-Zn-Zr alloy[J]. Materials Science and Engineering:A2022848:143358.

[42]

LIU KZHAO S CWANG Z Wet al. Effect of Nd on the microstructure and mechanical properties of hot extruded Mg-2.0Sm-0.4Zn-0.4Zr alloy[J]. Journal of Materials Engineering and Performance202231: 4369-4374.

[43]

GUAN KLI B SYANG Qet al. Microstructural characterization of intermetallic phases in a solution-treated Mg-5.0Sm-0.6Zn-0.5Zr (wt%) alloy[J]. Materials Characterization2018145:329-336.

[44]

LUO X PFANG D QCHAI Y Set al. Effect of Ca addition on the microstructure and mechanical properties of as-cast Mg-Sm alloys[J]. Microscopy Research and Technique201679:707-711.

[45]

CHE C JCHENG L RTONG L Bet al. The effect of Gd and Zn additions on microstructures and mechanical properties of Mg-4Sm-3Nd-Zr alloy[J]. Journal of Magnesium and Alloys2017706:526-537.

[46]

YUAN MZHENG Z Q. Effects of heat treatment on microstructure and mechanical properties of Mg-2.6Sm-1.3Gd-0.6Zn-0.5Zr alloy[J]. Journal of Materials Science and Technology201430:261-267.

[47]

ZHANG J HLENG ZLIU S Jet al. Structure stability and mechanical properties of Mg-Al-based alloy modified with Y-rich and Ce-rich mischmetals[J]. Transactions of Nonferrous Metals Society of China2011509 (20):L187-L193.

[48]

ZHANG J HLIU KFANG D Qet al. Microstructures, mechanical properties and corrosion behavior of high-pressure die-cast Mg-4Al-0.4Mn-xPr (x=1, 2, 4, 6) alloys[J]. Journal of Alloys and Compounds200948 (2):810-819.

[49]

WEI JWANG Q DZHANG Let al. Microstructure refinement of Mg-Al-RE alloy by Gd addition[J]. Materials Letters2019246:125-128.

[50]

YANG J DWANG W XZHANG Met al. Effects of Gd/Nd ratio on the microstructures and tensile creep behavior of Mg-8Al-Gd-Nd alloys crept at 423 K[J]. Journal of Materials Research and Technology202114:2522-2533.

[51]

YANG QGUAN KQIU Xet al. Structures of Al2Sm phase in a high-pressure die-cast Mg-4Al-4Sm-0.3Mn alloy[J]. Materials Science and Engineering:A2016675:396-402.

[52]

YANG QBU F QQIU Xet al. Strengthening effect of nano-scale precipitates in a die-cast Mg-4Al-5.6Sm-0.3Mn alloy[J]. Journal of Alloys and Compounds2016665:240-250.

[53]

WANG J LWANG L DWU Y Met al. Effects of samarium on microstructures and tensile properties of Mg-5Al-0.3Mn alloy[J].Materials Science and Engineering:A2011528:4115-4119.

[54]

SUN MHU X YPENG L Met al. Effects of Sm on the grain refinement, microstructures and mechanical properties of AZ31 magnesium alloy[J]. Materials Science and Engineering:A2015620:89-96.

[55]

CHEN J CLI M XYU Z Yet al. Simultaneous refinement of α-Mg grains and β-Mg17Al12 in Mg-Al based alloys via heterogeneous nucleation on Al8Mn4Sm[J]. Journal of Magnesium and Alloys202311:348-360.

[56]

CHEN Y HWANG L PFENG Y Cet al. Effect of Ca and Sm combined addition on the microstructure and elevated-temperature mechanical properties of Mg-6Al alloys[J]. Journal of Materials Engineering and Performance201928:2892-2902.

[57]

ZHI H,QUN H, HONG Yet al. Effect of trace Sm addition on microstructure and mechanical properties of AZ61 magnesium alloys[J]. Rare Metal Materials and Engineering201645(9):2275-2281.

[58]

ROKHLIN L LDOBATKINA T VNIKITINA N I. Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups[J]. Materials Science Forum2003419/422:291-296.

[59]

LIU N YZHANG Z YPENG L Met al. Microstructure evolution and mechanical properties of Mg-Gd-Sm-Zr alloys[J]. Materials Science and Engineering:A2015627:223-229.

[60]

YAN Z XYANG QMA Ret al. Effects of Sm addition on microstructure evolutions and mechanical properties of high-strength Mg-Gd-Sm-Zr extruded alloys[J]. Materials Science and Engineering:A2022831:142264.

[61]

LI D QWANG Q DDING W J. Characterization of phases in Mg-4Y-4Sm-0.5Zr alloy processed by heat treatment[J]. Materials Science and Engineering:A2006428:295-300.

[62]

LIU Z HWANG LWANG L Pet al. Effect of Al addition on the grain refinement and mechanical properties of as-cast Mg-5Y-4Sm alloys[J]. Journal of Materials Science202257:15137-15150.

[63]

LYU S YLI G DZHENG R Xet al. Reduced yield asymmetry and excellent strength-ductility synergy in Mg-Y-Sm-Zn-Zr alloy via ultra-grain refinement using simple hot extrusion[J]. Materials Science and Engineering:A2022856:143783.

[64]

CHEN X YLI Q AZHU L Met al. Effect of Sm on microstructure, mechanical property and lattice constant of as-cast Mg-11Gd-2Y-0.6Al alloy[J]. Transactions of the Indian Institute of Metals201972(7):1783-1789.

[65]

ZHANG QLI QJING X Tet al. Microstructure and mechanical properties of Mg-10Y-2.5Sm alloy[J]. Journal of Rare Earths201028:375-377.

[66]

LUK'YANOVA E AROKHLIN L LDOBATKINA T Vet al. Effect of samarium on the properties of Mg-Y-Gd-Zr alloys[J]. Russian Metallurgy (Metally)2018,2018(1):58-63.

[67]

QIU XYANG QCAO Z Yet al. Microstructure and mechanical properties of Mg-Zn-(Nd)-Zr alloys with different extrusion processes[J]. Rare Metals201635:841-849.

[68]

YU H YYAN H GCHEN J Het al. Effects of minor Gd addition on microstructures and mechanical properties of the high strain rate rolled Mg-Zn-Zr alloys[J]. Journal of Alloys and Compounds2014586:757-765.

[69]

YU HPARK S HYOU B Set al. Effects of extrusion speed on the microstructure and mechanical properties of ZK60 alloys with and without 1wt.% cerium addition[J]. Materials Science and Engineering: A2013583:25-35.

[70]

CANADIJA MGUO X FLANC Det al. Low cycle fatigue and mechanical properties of magnesium alloy Mg-6Zn-1Y-0.6Ce-0.6Zr at different temperatures[J]. Materials & Design201459:287-295.

[71]

YU HKIM Y MYOU B Set al. Effects of cerium addition on the microstructure, mechanical properties and hot workability of ZK60 alloy[J]. Materials Science and Engineering:A2013559:798-807.

[72]

ZHANG YHUANG X FLI Yet al. Effects of samarium addition on as-cast microstructure, grain refinement and mechanical properties of Mg-6Zn-0.4Zr magnesium alloy[J]. Journal of Rare Earths201735:494-502.

[73]

ZHENG JWANG Q DJIN Z Let al. Effect of Sm on the microstructure, mechanical properties and creep behavior of Mg-0.5Zn-0.4Zr based alloys[J]. Materials Science and Engineering:A2010527:1677-1685.

[74]

YANG L ZFENG YHE Y Qet al. Effect of Sc/Sm microalloying on microstructural and properties of Mg-2Zn-0.3Ca biodegradable alloy[J]. Journal of Alloys and Compounds2022907:164533.

[75]

GUAN KLI B SYANG Qet al. Effects of 1.5wt% samarium (Sm) addition on microstructures and tensile properties of a Mg-6.0Zn-0.5Zr alloy[J]. Journal of Alloys and Compounds2018735:1737-1749.

[76]

ZHANG T TCUI H WCUI X Let al. Ductility enhancement in an as-extruded Mg-5.5Zn-0.8Zr alloy by Sm alloying[J]. Journal of Alloys and Compounds2019784:1130-1138.

[77]

陈胜迁,宋新华,陈立. Mg-Zn-Sm 合金的微观组织与力学、腐蚀性能研究[J]. 稀土201738(1):108-113.

[78]

CHEN S QSONG X HCHEN L. Microstructure,mechanical and corrosion properties of Mg-Zn-Sm alloys[J]. Chinese Rare Earths201738(1):108-113.

[79]

LI L MHUANG Z QCHEN L Wet al. Changing the second phase distribution shape and improving the corrosion resistance of Mg-6.7Y-2.5Zn alloy by addition of trace Ta[J]. Corrosion Science2023221:111341.

[80]

TIAN G YWANG J SXUE C Pet al. Improving corrosion resistance of Mg-Li alloys by Sn microalloying[J]. Journal of Materials Research and Technology202326:199-217.

[81]

CI W JDENG L LCHEN X Het al. Effect of minor Ca addition on microstructure and corrosion behavior of Mg-Y-Ca alloys[J]. Journal of Materials Research and Technology202326:7502-7515.

[82]

SINGH CPANDA S SSINGH S Set al. Development of sustainable novel Mg-Ca-Sc alloys with exceptional corrosion resistance[J]. Journal of Alloys and Compounds2023955:170251.

[83]

JIN Z ZZHA MWANG D Wet al. Influence of Ce micro-alloying on the microstructure and corrosion behavior of sub-rapid solidified Mg-4.5Al-1.5Sn-0.5Ca alloys[J]. Journal of Materials Research and Technology202326:3768-3783.

[84]

LIU Y RZHANG K MZOU J Xet al. Effect of the high current pulsed electron beam treatment on the surface microstructure and corrosion resistance of a Mg-4Sm alloy[J]. Journal of Alloys and Compounds2018741:65-75.

[85]

CHEN X RZOU QLE Q Cet al. Two distinct roles of Al2Sm and Al11Sm3 phases on the corrosion behavior of the magnesium alloy Mg-5Sm-xAl[J]. Progress in Natural Science: Materials International202131:599-608.

[86]

LENG HLI Q NCHEN X Yet al. Effect of Ho content and heat treatment on the corrosion resistance of Mg-xHo-3Sm-0.5Zr alloy[J]. Journal of Materials Engineering and Performance202332(17):7785-7795.

[87]

FENG Y JWEI LCHEN X Bet al. Unexpected cathodic role of Mg41Sm5 phase in mitigating localized corrosion of extruded Mg-Sm-Zn-Zr alloy in NaCl solution[J]. Corrosion Science2019159:108133.

[88]

FENG Y JLI QZHAO T Let al. A quasi-passivated film formed on as-solutionized Mg-Sm-Zn-Zr alloy in NaCl solution[J]. Corrosion Science2022198:110136.

[89]

LI XHU ZYAN Het al. Effect of Sm-rich phase on corrosion behavior of hot-extruded AZ31-1.5Sm magnesium alloy[J]. Journal of Materials Engineering and Performance201827(6):3072-3082.

[90]

HU ZLIU R LKAIRY S Ket al. Effect of Sm additions on the microstructure and corrosion behavior of magnesium alloy AZ91[J]. Corrosion Science2019149:144-152.

[91]

KWON JBAEK SJUNG Het al. Role of microalloyed Sm in enhancing the corrosion resistance of hot-rolled Mg-8Sn-1Al-1Zn alloy[J]. Corrosion Science2021185:109425.

[92]

LI S BYANG X YHOU J Tet al. A review on thermal conductivity of magnesium and its alloys[J]. Journal of Magnesium and Alloys20208:78-90.

[93]

LIU Y FJIA X JQIAO X Get al. Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg-4Al magnesium alloys[J]. Journal of Alloys and Compounds2019806:71-78.

[94]

CHEN H CXIE T CLIU Qet al. Mechanism and prediction of aging time related thermal conductivity evolution of Mg-Zn alloys[J]. Journal of Alloys and Compounds2023930:167392.

[95]

ZHANG Y XZHANG Z RKANG H Het al. Development of an extremely dilute Mg-Mn-Ce alloy with high strength-thermal conductivity synergy by low-temperature extrusion[J]. Materials Letters2022326:132965.

[96]

SU C YLI D JLUO A Aet al. Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: a quantitative study[J]. Journal of Alloys and Compounds2018747:431-437.

[97]

LI Z XHU BLI D Jet al. Microstructure-dependent thermal conductivity and mechanical properties in cast Mg-4Sm-xAl alloys[J].Materials Science and Engineering:A2022861:144336.

[98]

YAO F JLI D JLI Z Xet al. Ultra-high thermal conductivity of Mg-4Sm-2Al alloy by MWCNTs addition[J]. Materials Letters2023341:134224.

[99]

YANG C BZHANG ZJIANG X Yet al. Comparison of the thermal conductivity of Sm-containing AZ31 and ZK30 alloys[J]. International Journal of Thermophysics201940:81.

基金资助

国家重点研发计划项目(2021YFB3501001)

AI Summary AI Mindmap
PDF (3692KB)

152

访问

0

被引

详细

导航
相关文章

AI思维导图

/