BiOCl的微结构改性及光催化性能研究进展

袁炳鑫 ,  李美葶 ,  张驰

材料工程 ›› 2025, Vol. 53 ›› Issue (08) : 72 -84.

PDF (2693KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (08) : 72 -84. DOI: 10.11868/j.issn.1001-4381.2024.000175
综述

BiOCl的微结构改性及光催化性能研究进展

作者信息 +

Research progress in microstructural modification and photocatalytic performance of BiOCl

Author information +
文章历史 +
PDF (2757K)

摘要

半导体光催化技术将可再生太阳能直接转化为化学能源,是极具应用潜力的环境修复手段。开发低成本、高效、稳定光催化剂是催化技术实用化的关键。然而半导体可见光响应弱、光生电子-空穴对传输缓慢,且易重新复合,严重限制光催化技术的广泛应用。BiOCl是四方结构的Ⅴ-Ⅵ-Ⅶ三元化合物半导体材料,其高度各向异性的层状堆积结构以及沿[001]方向形成的内建电场加速光生电子-空穴对的分离,进而提高光反应活性。近年来,国内外专家学者致力于通过合理的微观结构设计提高和改善BiOCl基半导体光催化材料的光催化性能和循环稳定性。本文从相结构、形貌和溶液化学特性等角度综述了BiOCl光催化性能的构效关系以及在能源生产、环境治理和医疗科学等领域的相关研究现状,重点阐述BiOCl的晶面工程、能带结构调控以及异质结构筑等改性策略及其光催化性能增强机制,为其他无机化合物的微观结构设计和光催化性能优化提供理论依据。

Abstract

Semiconductor photocatalytic technology holds promising application potential in environmental remediation,which converts renewable solar energy directly into chemical energy. The development of low-cost,highly efficient,and stable photocatalysts is crucial to practical application of catalytic technology. However,numerous semiconductors exhibit poor visible light response,slow transfer,and rapid recombination of photogenerated electron-hole pairs severely restricted the wide-spread application. BiOCl is a Ⅴ-Ⅵ-Ⅶternary compound semiconductor material with a tetragonal structure,and its highly anisotropic layered packing structure and internal electric field along the [001] direction accelerate the spatial separation of photogenerated electrons and holes,thus improve the photoreaction activity. Recently,worldwide researchers devoted to improve the photocatalytic performance and cycle stability of BiOCl-based semiconductor photocatalysts through reasonable microstructure design. This article overviews the relationship of photocatalytic properties of BiOCl from the perspective of phase structure,morphology and solution chemistry characteristics,and the research status in the field of energy production,environmental treatment,medical science,etc. The modification strategies of crystal facet engineering,modulation of energy band structure,heterojunction construction and the enhancement of photocatalytic properties are highlighted. This provided a theoretical basis for the microstructure design and optimization of the photocatalytic performance of other inorganic compounds.

Graphical abstract

关键词

BiOCl / 半导体光催化 / 微结构改性 / 光催化应用

Key words

BiOCl / semiconduction photocatalysis / microstructure modification / photocatalytic application

引用本文

引用格式 ▾
袁炳鑫,李美葶,张驰. BiOCl的微结构改性及光催化性能研究进展[J]. 材料工程, 2025, 53(08): 72-84 DOI:10.11868/j.issn.1001-4381.2024.000175

登录浏览全文

4963

注册一个新账户 忘记密码

近年来,环境污染与能源短缺已成为制约全球经济发展的两大难题。为实现“碳达峰、碳中和”的双碳目标,人们致力于开发新型环境修复与能源供应技术1。1972年,Fujishima和Honda2首次发现在不施加电场情况下,仅利用光照和TiO2单晶电极即可将水裂解为氢气和氧气,从而实现“光能→化学能”的直接转化。但TiO2作为一种宽带隙半导体光催化材料,禁带宽度(Eg)约为3.2 eV3,仅在紫外或近紫外光激发下呈现出较高的光反应活性,因此开发可见光驱动的半导体光催化剂具有重要的理论研究意义和实际应用前景4。光催化是指大于或等于本征禁带宽度的光(Eg)照射至半导体表面时,价带(valence band,VB)的电子(ecb-)跃迁至导带(conduction band,CB),并在价带中留下空穴(hvb+),产生光生电子-空穴对(ecb--hvb+)。一部分ecb-和hvb+体内复合,其余部分迁移至半导体表面。最终导带中ecb-还原被吸附的氧气生成超氧自由基(·O2-),价带中hvb+氧化H2O生成羟基自由基(·OH),进而实现光催化还原CO2、裂解水制氢、降解有机污染物和有机合成等目标5-7
图1(b)所示,铋基半导体光催化剂的Eg约为3.0 eV,其VB电位因Bi6s与O2p轨道杂化而升高,导致Eg相对TiO2减小,从而增强可见光催化活性。另外,铋基半导体光催化材料因具有低毒性、优异的化学惰性和合适的能带结构而引起广泛关注。大部分铋基半导体皆为可见光响应型光催化剂,例如Bi2O3、CaBi2O4、Bi2WO6、BiVO4、Bi4Ti3O12、Bi2O2CO3、BiOIO3以及BiOXX=Cl,Br,I)等68。如图1(a)所示,BiOCl是四方结构的Ⅴ-Ⅵ-Ⅶ三元半导体化合物,空间群为P4/nmm,晶格常数a=b=0.3890 nm,c=0.7890 nm9。BiOCl的层状结构是由[Bi2O22+层与Cl-层交替排列而成,其层间原子沿c轴方向依靠范德瓦耳斯力相互作用,层内原子间以共价键的形式存在。因此,BiOCl在该方向上并未紧密堆积10。其松散且高度各向异性的层状堆积结构以及沿[001]方向形成的内建电场加速光生ecb--hvb+的分离,进而提高光反应活性11-12。液相法(水/溶剂热法、沉淀法、溶胶-凝胶法等)可通过改变晶体的形核和生长过程实现对产物微结构的精确调控,因此常用于无机化合物的合成13。利用表界面改性使更多的光活性晶面暴露利于改善半导体的光催化性能14。Li等15以甘氨酸根为络离子,采用简单的水热反应合成出了ZnWO4微纳米晶,发现高长径比ZnWO4的光反应活性最佳,80 min内可降解水溶液中约99.5%(原子分数,下同)的甲基橙(methyl orange,MO)分子,而Ag颗粒的表面修饰仅利于提高低活性ZnWO4四棱柱的催化效率。
BiOCl具有独特的晶体结构和优异的光电功能特性,在催化、环境修复及能源转化领域具有广阔的应用前景。同时合理的设计和优化液相合成路线,可实现对BiOCl的能带结构和微纳结构的精准调控,进而显著提升其光催化性能和稳定性。本文将从相结构、形貌和溶液化学特性角度简要综述BiOCl光反应活性的构效关系及其在光催化领域的研究进展,同时梳理了近年来通过晶面工程、能带结构剪裁和异质结构筑的策略提升BiOCl在光催化裂解水制氢、污染物降解、CO2还原、固氮、抗菌、有机合成领域的创新性成果,为开发出新型高效可见光半导体光催化材料提供理论依据。

1 BiOCl改性制备

尽管BiOCl具有稳定的理化性质和独特的电子结构而在半导体光催化领域极具应用前景,但光生ecb-和hvb+易复合、CB边缘电势较低和可见光响应弱等问题严重阻碍其发展。诸多研究表明,晶面工程、能带调控、异质结构筑等策略可有效提高和改善半导体的可见光催化活性316-17

1.1 晶面工程

通常情况下,BiOCl为二维纳米片或纳米板,这种二维结构是由BiOCl层间弱范德瓦耳斯力与层内共价键组成18-19。与一维结构相比,二维BiOCl具有更多的活性位点,利于生成更多的自由基并参与反应。目前,人们致力于改变二维BiOCl中某些晶面的暴露程度或将BiOCl设计成三维花状、球状以及空心球状等不同形态以提升BiOCl的光反应活性(图220-22。例如Zeng等18采用简单的水热法合成出{001}与{110}共暴露的BiOCl微米片,经紫外光照射180 min对含硫化合物二苯并噻吩(dibenzothiophene,DBT)脱硫率可达99.1%。Hao等22采用简单的溶剂热法制备出BiOCl微米花,光照40 min即可去除水溶液中99.0%的罗丹明B(Rhodamine B,RhB)。目前的研究表明,多维度BiOCl表面活性位点更多,且利于载流子传输,因此其光催化性能普遍优于低维度BiOCl。

1.1.1 酸碱溶液调控

水溶液中Bi3+与含氧配体(OH-)更加亲和,易形成具有非链式对称结构的稳定配离子。每个Bi3+结合OH-的配位平均数(n¯)与溶液pH值有关,即在较宽的pH值范围内n¯为2.00±0.02,通式为(BiO)nn+或Bi n On-1(n+2)+[23]。酸性条件下,n¯≤2,水解产物主要为Bi(OH)2+、BiOH2+、Bi6(OH)126+。当溶液pH值增加时,n¯>2,水解产物为Bi9(OH)202+和Bi9(OH)216+等。由于Bi3+易水解的特性,现代化工常采用BiCl3水解法制备BiOCl(反应式:Bi3++H2O+Cl-→Bi(OH)2Cl+2H+→BiOCl+2H+)。水解过程中可加入HCl,这不仅提供了反应所需的Cl-,同时降低溶液pH值以控制水解反应速率24

水热法合成BiOCl通常以Bi(NO33·5H2O为铋源,氯化盐为氯源。与Cl-结合过程中,常伴随H+生成,影响反应环境。溶液pH值是一种简单的晶面调控方式,其可显著改变化学势和离子移动速率之间的平衡,进而控制BiOCl形核和长大过程25。Jiang等26采用简单的水热反应并利用NaOH调节溶液的pH值成功合成出了{001}和{010}晶面分别暴露的BiOCl纳米片,前者因表面原子结构和合适的内建电场而展现出较强的紫外光降解MO活性,后者因较大的比表面积和开放的通道特征而具有更为优异的可见光催化能力。这主要是由于H+易与(001)晶面的末端氧原子结合,从而利于(001)晶面暴露。添加NaOH可中和溶液中的H+,从而削弱H+与(001)晶面末端氧的相互作用,抑制(001)晶面的生长,最终获得(010)晶面高度暴露的BiOCl纳米片。Zhang等27研究结果表明,与(001)晶面相比,BiOCl的(010)晶面含有更多的末端铋(而非氧)作为光催化反应的活性位点,从而增强可见光吸收能力并加速界面电荷转移。

1.1.2 反应溶剂调控

与溶液pH值相比,采用有机溶剂辅助液相法合成BiOCl可显著改变反应路径以及形核和生长速率,进而影响BiOCl的相结构和微观形貌25。根据目前研究进展,反应溶剂调控可简易分为络合剂调控和表面活性剂调控两种方式。

柠檬酸(citric acid,CA)化学式为C6O7H8,是一种常见的三元有机羧酸,其与Bi3+络合形成[Bi(OH) x (C6O7H5y3-x-3y,水热反应过程中脱出的C6O7H53-和未参与络合反应的C6O7H53-选择性吸附在BiOCl晶核表面,从而改变生长习性和晶粒间互作用。Hao等11采用CA辅助的水热反应合成出(001)晶面高度暴露的BiOCl四方片,发现其具有良好的可见光降解RhB能力,速率常数k=0.01286 min-1,约为无CA添加所得BiOCl的2倍(k=0.00717 min-1)。Yan等28以CA为络合剂制备出尺寸较小且{001}活性晶面高度暴露的BiOCl纳米四方片。发现CA加入量为10 mmol所得BiOCl在降解硝基炸药方面表现出最强的可见光催化能力,经循环5次对4-硝基酚的降解效率高达94%,远高于CA未参与反应时所得产物经1次循环约69%的降解率。

壳聚糖(chitosan,CS)化学式为C56H103N9O39,对金属离子具有优越的亲和力,可以诱导产物形成特定的中空结构。在BiOCl的制备过程中,Bi3+首先与溶液中的CS聚合物链以及侧基(—NH2和—OH)络合,再与Cl-形成前驱体溶液。在BiOCl结晶过程中,络合物逐渐分解,进而诱导大量超薄纳米片自组装。Cao等29以CS为结构导向剂并采用水热法成功制备出空心微球状BiOCl,所得产物在可见光照射下表现出优异的催化活性,仅经35 min可见光照射对抗生素的去除率高达97.7%。

表面活性剂是指同时具有疏水和亲水基团的有机化合物,在水溶液中以疏水基团为核心形成球状聚集体25。以纳米片为结构单元构建空心或三维多孔结构是一种常见的形貌调控手段。与络合剂调控方式不同,表面活性剂不再参与BiOCl的形核过程,而是直接作用于材料表面,抑制其某一(些)晶面生长。Li等30以乙二醇(ethylene glycol,EG)为溶剂成功制备出多维度含Yb3+、Er3+的BiOCl微纳米晶,发现三维纳米花的红光发射强度约为一维纳米棒的4倍,同时可实现纯红色上转换发光。Song等31采用十二烷基苯磺酸钠(sodium dodecylbenzenesulfonate,SDBS)辅助的水热反应制备出具有{001}晶面高度暴露的三维网状BiOCl,发现其具有很强的光催化CO2还原活性,SDBS添加量为0.6 g所得BiOCl样品经4 h可见光照射的CO产率为2.73 μmol/g,约为相同光照条件下无SDBS产物的CO产率(0.268 μmol/g)的10倍。因此,合理调节反应溶剂的种类和浓度可精确控制产物的微观形貌,进而提升BiOCl催化剂的光反应活性。

1.2 能带调控

BiOCl属于宽带隙半导体光催化剂(Eg≈3.3 eV9),仅吸收波长较短的紫外光,对太阳能的利用率极低。因此开发可见光响应型BiOCl基光催化剂已成为研究热点。Han等32通过调节溶液pH可控合成出Sn掺杂的BiOCl,pH=6条件下所得Sn-BiOCl样品经8 h可见光照射后,可降解水溶液中99%的RhB分子,远高于其他样品降解率。Chen等33利用螺旋碳纤维(spiral carbon fiber,SCF)与BiOCl复合,成功合成出富含氧空位的复合光催化剂,可见光照射下SCF/BiOCl样品对四环素(tetracycline,TC)、苯酚以及Cr(Ⅵ)的光催化活性分别是纯BiOCl的3.2、2.5、10.6倍。目前通过离子掺杂、氧空位引入等方法来拓宽可见光响应范围并促进光生载流子分离的研究已取得一定研究进展。

1.2.1 掺杂

向BiOCl光催化剂中引入一定量的金属离子或非金属元素作为杂质能级可有效拓宽光响应范围,促进光生ecb--hvb+分离。一般情况下,金属离子掺杂主要包括过渡金属离子、稀土金属离子等34-39,非金属掺杂是指引入N、S、C等非金属元素40-46。从表134-4043-46可知Al3+、B、P、F掺杂前后BiOCl的Eg并未出现明显减小,说明掺杂并未拓宽光响应范围,但显著提高ecb--hvb+空间分离效率。此外,掺杂浓度不宜过高,否则可能产生新的ecb--hvb+复合中心,进而降低催化剂的光反应活性,且易导致杂质相生成。

1.2.2 氧空位引入

氧空位(oxygen vacancies,VO)是一种常见的缺陷,可通过真空煅烧、紫外光照射等方法去除材料表面的氧原子获得47-48。Shen等49在室温下借助聚乙烯吡咯烷酮(polyvinyl pyrrolidone,PVP)成功合成出BiOCl纳米团簇,在模拟太阳光照射下可将表面羟基自发快速地转化为表面VO与吸附水,进而引入新的缺陷能级。其光催化降解RhB与Cr(Ⅵ)的速率常数分别为k≈0.865 min-1k≈1.142 min-1,分别约为无PVP辅助所得BiOCl纳米团簇的13倍与9倍。此外,BiOCl纳米团簇的光催化析氢速率(1.21 mmol·g-1·h-1)约为无PVP辅助所得BiOCl纳米团簇的7.6倍。Hou等50通过调节BiOCl前驱体的pH值并以天冬氨酸(aspartic acid,Asp)为表面活性剂可控合成出一种富含VO的三维BiOCl,经60 min可见光照射可降解水溶液中约80%的TC分子。VO作为半导体VB和CB之间的缺陷能级,可有效拓宽可见光响应范围。此外,VO利于捕获光生ecb-,抑制其与hvb+复合。

1.2.3 富铋富氧

BiOCl中VB主要是由Bi6p、O2p、Cl3p轨道杂化而成,CB是由Bi6s和Cl3s轨道组成50。调整卤化物含量以构建富铋富氧型Bi x O y Cl z 可望改变CB或VB电势,进而减小Eg,实现BiOCl能带结构的有效调控和可见光驱动催化行为。Wang等51采用溶剂热法合成出富氧Bi12O17Cl2纳米带(Eg=2.07 eV),经120 min可见光照射可降解约95%的无色污染物双酚A(bisphenol A,BPA),为BiOCl的约20倍。Yin等52通过煅烧辅助的溶剂热反应成功合成出Bi24O31Cl10微米片(Eg=2.46 eV),经150 min可见光照射可降解约80.1%的TC-HCl,其速率常数k≈0.011 min-1约为BiOCl的5倍(k≈0.0021 min-1)。综上所述,富铋富氧型Bi x O y Cl z 的电子结构和能带结构在可见光响应光催化领域更具优势。

1.3 异质结构筑

光子吸收差、可见光响应弱和光生载流子易复合严重限制单一半导体光催化剂的光反应活性,因此前人尝试将两种或多种具有合适能带结构的半导体紧密结合,并在接触界面处构筑异质结。该结构可使不同组分之间发生协同作用,实现光生ecb--hvb+的高效空间分离并拓宽光响应范围,从而大大提高光催化效率153-54。Gogoi等55采用溶剂热反应成功合成出BiOCl-LaOCl复合材料,阳光下静置30 min即可降解约97.78%的RhB,其速率常数k≈0.1209 min-1,远高于相同条件下单一BiOCl(k≈0.0205 min-1)和LaOCl(k≈0.0030 min-1)。

1.3.1 p-n型异质结

根据能带结构异质结分为三种类型,即能带嵌入排列的Ⅰ型(type-Ⅰ)、能带交错排列的Ⅱ型(type-Ⅱ)和能带不重叠排列的Ⅲ型(type-Ⅲ)异质结56。原则上,仅type-Ⅱ实现了光生载流子的空间分离,进而改善和提高半导体的光催化活性。p-n结是一种特殊的type-Ⅱ异质结,由p型半导体和n型半导体构成(图3)。在一定能量的光激发下,光生ecb-从光催化剂Ⅱ(Photocatalyst Ⅱ,PCⅡ)电位较高的CB转移至光催化剂Ⅰ(photocatalyst Ⅰ,PCⅠ)电位较低的CB上,光生hvb+从PCⅠ的VB跃迁至PCⅡ的VB上57。Qiu等58采用水热法将CuBi2O4(p型)与BiOCl(n型)复合以构筑CuBi2O4/BiOCl光催化剂,当CuBi2O4的质量分数为20%时,CuBi2O4/BiOCl异质结的光催化效果最佳,经60 min可见光照射可降解约91.5%的TC,速率常数k≈0.0397 min-1,分别约为单一CuBi2O4和BiOCl的58.2倍和4.1倍。由此可知,p-n结的空间电荷区内建电场极大程度提升光生ecb--hvb+的分离效率,进而显著增加光反应活性。

1.3.2 Z型异质结

事实上p-n结的电荷转移机制并不利于光催化反应进行。从动力学角度分析,光生ecb-转移需克服半导体间库仑静电斥力作用和本身导带电子和价带空穴间的库仑静电引力,因此电荷转移过程受限。从热力学角度看,传统type-Ⅱ异质结严重削弱光生ecb-和hvb+的还原氧化能力。受绿色植物光合作用机制启发,Z型异质结引起了研究者们的广泛关注59。Shen等60采用水热法将Mn3O4(p型)与BiOCl(n型)复合得到Z型Mn3O4/BiOCl光催化剂,经10 min模拟太阳光激发对NO的去除率可达75%,约为单一BiOCl的3倍。此外Mn3O4/BiOCl易将NO氧化为NO3-,同时抑制副产物NO2的生成。Guo等61采用水热法构筑了一种Sn4+掺杂的Z型ZnO/BiOCl异质结,经180 min模拟可见光照射,Sn-ZnO/BiOCl复合催化剂的析氢能力最强,ZnO、BiOCl、ZnO/BiOCl、Sn-ZnO/BiOCl的析氢速率分别为220.53、199.21、313.61、491.54 μmol·g-1·h-1。该异质结使PCⅡ中CB上低效ecb-与PCI中VB的低效hvb+复合,最大程度地保留PCⅠ中CB上具有强还原能力的光生ecb-和PCⅡ中VB上强氧化能力的光生hvb+,进而提高光催化反应效率。

1.3.3 S型异质结

近年来,Yu团队57在Z型异质结的基础上提出了S型异质结的新概念,其主要由显著费米能级差的氧化型光催化剂(oxidation photocatalyst,OP)和还原型光催化剂(reduction photocatalyst,RP)通过错开型方式复合。在内部电场、弯曲能带和库仑引力的作用下,加速光生载流子体相分离的同时保留RP强还原和OP强氧化能力59

Huang等62通过溶剂热法在BiOCl微米片表面负载MoSe2纳米片,制备出S型BiOCl/MoSe2异质结。在模拟阳光照射下对染料MO和抗生素磺胺嘧啶(sulfadiazine,SD)的降解速率(kMO≈0.0307 min-1kSD≈0.9323 h-1)远高于单一BiOCl(kMO≈0.0027 min-1kSD≈0.3258 h-1)和MoSe2kMO≈0.0020 min-1kSD≈0.1246 h-1)。Yuan等63通过简单的水热法成功构筑了S型Cu2O/BiOCl异质结,经80 min可见光照射降解约90.3%的TC,远高于单一Cu2O(77.09%)和BiOCl(45.08%)的降解率。Wang等64利用化学沉积法将CdS纳米颗粒分别沉积在{001}与{010}晶面高度暴露的BiOCl纳米片上构筑S型CdS/BiOCl复合材料,发现其具有很强的可见光催化CO2还原活性,其中{001}晶面高度暴露的CdS/BiOCl样品的CO和CH4产率分别约为2.00 μmol·g-1和6.85 μmol·g-1,优于{010}晶面高度暴露的CdS/BiOCl异质结。与其余种类异质结相比,S型异质结的光生ecb--hvb+分离速率更快,氧化还原能力更强,光催化效率更高,是一种极具研究价值的内部电荷传递模型。

1.3.4 电子“桥”构建

构筑异质结的主要目的是提高光生载流子分离效率。在半导体异质结之间构建电子“桥”可显著缩短光生ecb--hvb+迁移距离,从而更大限度抑制其复合。已有研究表明,Ag、Pd、Au等贵金属参与电子“桥”构建,进而提高BiOCl基微纳米晶的光催化活性65-67。Wang等68通过热还原法将Au纳米颗粒均匀分散在BiOCl/BiOI复合光催化剂上,进而得到新型Au/BiOCl/BiOI三元异质结复合光催化剂。发现经30 min可见光照射对RhB去除率可达97%,速率常数k≈0.1089 min-1,约为BiOCl/BiOI(k=0.0484 min-1)的2.25倍。借助Au电子“桥”,ecb-可在BiOI与BiOCl之间快速迁移,从而形成高速的空间电子转移通道以提高BiOCl/BiOI光催化性能。

2 BiOCl的应用

太阳光的有效收集和捕获以及光生载流子的高效分离是BiOCl光催化剂实用化的关键。如图4所示,利用BiOCl将太阳能直接转换为可储存能源或太阳能直接驱动以实现绿色环境修复已成为光催化领域的研究热点53-54

2.1 裂解水制氢

据统计,化石燃料产能约占全球能源消耗量的90%。然而储量有限且开采费用昂贵,同时二氧化碳等温室气体大量排放显著影响生态环境。相比之下,氢气具有价格低廉、高效环保等优点,因此氢能被认为是可替代化石燃料的新型能源。当前制氢的方法主要包括碳氢化合物重整法、碳氢化合物热解法、生物质气化法和碱性水电解法等,但这些方法不可避免使用化石燃料作为反应源,或需要燃烧化石燃料转换成电能。为克服上述问题,人们提出了半导体光催化裂解水制氢技术69-70。这里ecb-负责将水中H+还原为H2,hvb+将O2-氧化成O2,反应过程如式(1)~(2)所示:

2H2O+hvb+→ 4H++O2
2H++ecb-→ H2

Bera等71协同共沉淀和水热反应成功将p型CuFe2O4(CFO)沉积在n型BiOCl上,得到具有Z型异质结的BiOCl/CFO复合光催化剂,发现其在可见光照射下呈现出优异的产氢性能(约22.2 mmol/h),约为单一BiOCl的5.7倍。Sun等72采用溶剂热反应原位合成出Z型BiOCl/WO3复合材料,其光催化析氢速率为83.4 μmol·g-1·h-1,约为单一BiOCl的4.5倍。在Z型异质结与内建电场的共同影响下,BiOCl具有较强的光生载流子分离能力和循环稳定性,利于实现可见光驱动高效裂解水制氢。尽管H2以其高效率、易储存和无污染的独特性质被认为是最具发展潜力的新型能源,但H2在实际应用中仍存在一些问题,例如H2易燃、储存、运输等73

2.2 污染物降解

染料和药物抗生素等有机污染物在现代社会中大量使用和肆意排放,已对生态系统、人类健康以及社会经济发展造成了巨大负面影响5074。人们发现BiOCl在紫外光激发下表现出优异的降解能力,为了满足实际需求,需通过制造VO、离子掺杂、构筑异质结等改性手段来增强其可见光反应活性,使其在太阳光驱动下即可降解有机污染物。表23275-82总结了近年来一些有关BiOCl降解有机污染物的研究报道。

光降解实验中通常需要将BiOCl光催化剂和被降解物溶液置于暗室搅拌一段时间,使催化剂表面吸附水分子与有机物分子,并达到吸附-脱附平衡。光照使一部分光生载流子从催化剂内部发生转移至表面并率先与吸附水发生氧化还原反应,参与反应的·O2-、h+和·OH等活性物质进一步选择性分解有机污染物生成无毒的小分子产物、CO2和H2O83-84。BiOCl的有效改性不仅拓宽光响应范围,而且加快光生载流子转移速率提高催化效率。然而由表2可知,BiOCl光催化循环稳定性仍有待提高。

2.3 CO2还原

化石燃料的过度消耗和CO2的大量排放已造成环境恶化和能源枯竭。CO2是一种热力学稳定的非极性分子(EC=O=799 kJ·mol-1,Δ fG298Θ=-394.36 kJ·mol-1),因此很难被活化和还原85。通过效仿绿色植物及某些微生物的光合作用,利用太阳能将温室气体CO2转化为高附加值化学品或燃料是解决当前危机的有效途径86。该方法不仅能实现太阳能的转换和存储,而且为改善空气质量和创造清洁能源提供新思路。1979年,Inoue等87首次报道WO3、TiO2、ZnO等半导体粉末可将CO2光催化还原为碳氢化合物以来,人们致力于开发多种高效、稳定的CO2光还原催化剂。BiOCl在紫外光照射下呈现出良好的光催化活性,同时因层内共价键和层间范德瓦尔斯力而具有更为优异的光催化稳定性,是一类颇具应用潜力的半导体光催化材料。然而光生载流子易复合、可见光响应弱、导带边缘电势较低等问题极大限制了单一BiOCl在可见光驱动CO2还原领域的应用。此外,碳在CO2中呈现出最高氧化态,易与电子和质子结合而被还原为C1产物(CO、HCOOH、HCHO、CH3OH和CH4),甚至利用C—C耦合反应生成C2产物(C2H4、C2H6和CH3CH2OH)8588。因此,增强BiOCl基催化剂的光反应活性和控制产物选择性对提高目标产物产率、明确CO2还原反应机理具有重要意义。

Song等89通过水热法原位合成出CuO/BiOCl异质结光催化剂,在可见光照射下,CO2被还原成沸点不同的甲烷(CH4)和甲醇(CH3OH),产率分别约114.1、36.2 μmol·g-1·h-1,远高于单一BiOCl。该反应为简单的有机合成过程,CH4的产率较高主要是由于CH4的还原电势(CO2/CH4=-0.24 eV)比CH3OH(CO2/CH3OH=-0.38 eV)的低。Gong等90采用水浴反应制备出(001)晶面高度暴露的BiOCl微米球,随后进行热处理向晶格中原位引入VO与铋(Bi0)纳米颗粒。可见光还原“CO2→CO”实验中,发现CO产率约为24.82 μmol·g-1·h-1,是单一BiOCl的4倍。通过选择性暴露BiOCl晶面、表面引入VO以及构筑异质结等改性策略,可显著增加CO2高效还原活性位点数量,同时调节能带结构以提高光生载流子的分离和转移效率,进而增强BiOCl对CO2的光还原活性64

2.4 固氮

氨(NH3)是固氮反应的主要产物,因被视为绿色氢载体并可用于制造农业肥料、人造纤维等化学物品而对人类生活极具意义。然而传统Haber-Bosch制氨工艺已造成的大量年耗能,因此开发高效节能的光催化固氮技术极具应用前景91-93。但是“N2→NH3”光催化反应复杂,—N≡N—键高度稳定、N2很难吸附在还原位点且反应中间产物的吉布斯自由能较高等问题大大降低固氮效率,因此BiOCl光催化剂的改性至关重要94

Guo等95通过溶剂热法构筑出了ZnIn2S4/BiOCl异质结,其中含有0.5%(质量分数) ZnIn2S4样品经6 h可见光照射表现出优异的固氮性能,其NH3产率(14.6 μmol·g-1·h-1)约为单一BiOCl的2.6倍。Cai等96采用水热法合成出Z型g-C3N4/BiOCl复合材料,经3 h模拟太阳光照射NH3产率(1773.8 μmol·g-1·h-1)约为单一BiOCl的5.2倍,且经5次循环产率未见明显改变。Xiao等97利用水热反应将MoO2纳米片负载于BiOCl纳米板构筑MoO2/BiOCl异质结复合材料,发现其具有较高的固氮性能,经可见光照射NH3产率(35 μmol·g-1·h-1)约为单一BiOCl的8倍。这主要得益于N2吸附和活化能力优异以及光生ecb--hvb+有效分离和转移。

2.5 抗菌

日常生活中,细菌滋生或将导致疾病的出现,进而威胁到人类的生命安全。一般来说,抑制细菌增殖与发育的过程称为抗菌。与传统抗菌方式相比,光催化抗菌无异味、污染小且不会对细菌产生耐药性。其机理与降解有机污染物过程类似,半导体经光激发而生成的光生载流子转移至材料表面,与H2O或O2发生氧化还原反应,进而生成自由基抑制细菌增殖98

Liu等98通过共沉淀法制备出Bi4O5I2/BiOCl异质结复合材料,LED光照(420~680 nm)下能分别在30 min和75 min将大肠杆菌和金黄色葡萄球菌完全灭活。Wu等99未使用表面活性剂仅在室温下合成出具有异质结构的BiOCl/BiO1.84H0.08纳米圆盘,经4 h白光LED灯照射可将大肠杆菌K-12菌群完全灭活,表现出较强的抗菌能力。自由基捕获实验证实,hvb+在BiOCl基复合材料抗菌过程中起关键作用,可直接氧化分解细菌,ecb-次之,其余·O2-和·OH等自由基几乎不参与反应。

2.6 有机合成

光催化反应条件温和,符合绿色生产理念。受光激发后,有机化合物的X—H键(X=C,N,O,S)易被半导体表面的光生hvb+活化并裂解,断裂后的H+再被光生ecb-还原为H2、·O2-、·OH等自由基参与偶联反应以重构C—X键(X=C,N,O,S),进而完成有机转换。目前,光催化技术已被广泛应用于醇类氧化、甲烷活化、环烃脱氢和胺类氧化等有机反应中100-101

醇选择性氧化生成醛或酮等羰基化合物是有机转化的基本反应,其产物是合成药物与化学品的通用成分。Li等102采用煅烧辅助的水热合成工艺成功制备出了富含VO的球状Au-BiOCl光催化剂,经8 h可见光照射,苯甲醇被氧化生成苯甲醛,转化率高达75.6%。BiOCl的VO捕获ecb-与表面吸附氧生成·O2-自由基,而Au的引入可氧化苯甲醇产生碳中心自由基,两种自由基协同作用有助于苯甲醇有机转化为苯甲醛。亚胺在生产药物与化学品领域中具有重要意义。Wu等103采用溶胶-凝胶法合成超薄BiOCl纳米片,在可见光照射下,仲胺(如N-叔丁基苄胺)被高效转化为相应的亚胺,其转换率高达90%~99%,仲胺与亚胺偶联的选择性为89%~99%。至此,光催化应用已从广泛的水相污染物降解拓展至精细化学药品合成,并为制备有机化合物开辟新思路。

3 结束语

BiOCl是一种空间对称的非极性四方层状结构,受暴露晶面、内部电场和能带结构等因素的显著影响,仅在紫外光照射下呈现良好的光催化活性。通过晶面工程、能带调控和异质结构筑等策略可有效拓宽BiOCl可见光响应范围,抑制内部光生载流子复合,提高表面氧化还原反应速率,进而推动BiOCl在能源生产和环境修复等方面的开发与应用。本文综述了近年来几种代表性改性策略、光催化机理以及相关应用研究进展,为进一步实现高效、绿色、稳定的光催化研究奠定理论基础。实际上,BiOCl的微观构造与光反应活性之间的关联以及光催化机制等科学问题亟待解决,兼具高吸附能力和催化选择性的催化剂的结构设计有待提升。

(1)传统水/溶剂热法合成BiOCl可实现产物微观结构的有效调控,但其反应时间长、对设备要求苛刻以及产率较低等问题严重制约工业化进程。需从BiOCl动力学和热力学生长机制的角度出发,寻求反应条件温和的制备工艺,同时降低成本、提高效率,甚至摆脱已有方法的局限性。

(2)光催化实验中所用模拟光源与太阳光谱范围相近,但未考虑光催化剂总辐照度是否受气候与环境的影响。因此可增加户外自然光催化实验,考察BiOCl的实际应用效果。

(3)BiOCl光催化剂的反应途径和机理尚不明确。可引入相关模拟计算辅助理论分析。

(4)大部分报道仅研究BiOCl降解水体有机污染物(如染料RhB、MO和抗生素等),并测试其循环稳定性,但未提出BiOCl粉体的有效回收方案。可将BiOCl负载并固定在玻璃、陶瓷等载体以便及时回收,减少损失。

(5)BiOCl在裂解水制氢、CO2还原与固氮中反应活性较弱,产率不理想。因此可采取多种改性手段并行或构筑新型BiOCl基光催化材料以优化BiOCl的光反应活性。

参考文献

[1]

QIN M ZFU W XGUO Het al. 2D/2D Heterojunction systems for the removal of organic pollutants: a review [J]. Advances in Colloid and Interface Science2021297: 102540.

[2]

FUJISHIMA AHONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature1972238(5358): 37-38.

[3]

TAN L LONG W JCHAI S Pet al. Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide [J]. Nanoscale Research Letters20138: 465.

[4]

WANG H LZHANG L SCHEN Z Get al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances [J]. Chemical Society Reviews201443(15): 5234-5244.

[5]

SU JLI G DLI X Het al. 2D/2D heterojunctions for catalysis [J]. Advanced Science20196(7): 1801702.

[6]

CHENG H FHUANG B BDAI Y. Engineering BiOXX=Cl, Br, I) nanostructures for highly efficient photocatalytic applications [J]. Nanoscale20146(4): 2009-2026.

[7]

REVERBERI A PVARBANOV P SVOCCIANTE Met al. Bismuth oxide-related photocatalysts in green nanotechnology: a critical analysis [J]. Frontiers of Chemical Science and Engineering201812(4): 878-892.

[8]

ZHAO CPAN XWANG Z Het al. 1+1>2: a critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis[J].Chemical Engineering Journal2021417: 128022.

[9]

ZHANG K LLIU C MHUANG F Qet al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst [J]. Applied Catalysis B200668(68): 125-129.

[10]

CHEN C YJIANG THOU J Het al. Oxygen vacancies induced narrow band gap of BiOCl for efficient visible-light catalytic performance from double radicals [J]. Journal of Materials Science & Technology2022114: 240-248.

[11]

HAO Z XLV X WHOU W Xet al. Facile synthesis of BiOCl single-crystal photocatalyst with high exposed (001) facets and its application in photocatalytic degradation [J]. Inorganic Chemistry Communications2021134: 109038.

[12]

HUANG W LZHU Q S. DFT calculations on the electronic structures of BiOXX = F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states [J]. Journal of Computational Chemistry200930(2): 183-190.

[13]

LI M TLI J G. Extensive tailoring of REPO4 and REVO4 crystallites via solution processing and luminescence [J]. CrystEngComm202224: 4841-4852.

[14]

LI M TMENG Q HLI S Yet al. Photoluminescent and photocatalytic ZnWO4 nanorods via controlled hydrothermal reaction [J]. Ceramics International201945(8): 10746-10755.

[15]

LI M TZHU QLI J Get al. Elongation of ZnWO4 nanocrystals for enhanced photocatalysis and the effects of Ag decoration [J]. Applied Surface Science2020515: 146011.

[16]

FANG W QGONG X QYANG H G. On the unusual properties of anatase TiO2 exposed by highly reactive facets [J]. The Journal of Physical Chemistry Letters20112: 725-734.

[17]

LIU GYU J CLU G Qet al. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties [J]. Chemical Communications201147: 6763-6783.

[18]

ZENG X YXIAO X YCHEN J Yet al. Understanding the effects of co-exposed facets on photocatalytic activities and fuel desulfurization performance in BiOCl singlet-crystalline sheets [J]. Journal of Hazardous Materials2020391: 122198.

[19]

WANG X YLIU X MLIU Get al. Rapid synthesis of BiOCl graded microspheres with highly exposed (110) facets and oxygen vacancies at room temperature to enhance visible light photocatalytic activity [J]. Catalysis Communications2019130: 105769.

[20]

WENG S XHU JLU M Let al. In situ photogenerated defects on surface-complex BiOCl (010) with high visible-light photocatalytic activity: a probe to disclose the charge transfer in BiOCl (010)/surface-complex system [J]. Applied Catalysis B2015163: 205-213.

[21]

CUI P ZWANG J LWANG Z Met al. Bismuth oxychloride hollow microspheres with high visible light photocatalytic activity [J]. Nano Research20169: 593-601.

[22]

HAO H YXU Y YLIU Pet al. BiOCl nanostructures with different morphologies: tunable synthesis and visible-light-driven photocatalytic properties [J]. Chinese Chemical Letters201526: 133-136.

[23]

BAES C FMESMER R E. The hydrolysis of cations [M]. New York: Wiley-Interscience, 1976.

[24]

WANG YSHI Z QFAN C Met al. Synthesis of BiOCl photocatalyst by a low-cost, simple hydrolytic technique and its excellent photocatalytic activity [J]. International Journal of Minerals, Metallurgy and Materials201219(5): 467-472.

[25]

SHI W DSONG S YZHANG H Jet al. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures [J]. Chemical Society Reviews201342: 5714-5743.

[26]

JIANG JZHAO KXIAO X Yet al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets [J]. Journal of the American Chemical Society2012143: 4473-4476.

[27]

ZHANG LNIU C GXIE G Xet al. Controlled growth of BiOCl with large {010} facets for dye self-photosensitization photocatalytic fuel cells application [J]. ACS Sustainable Chemistry & Engineering20175(6): 4619-4629.

[28]

YAN JJIN BZHAO Pet al. Facile fabrication of BiOCl nanoplates with high exposure {001} facets for efficient photocatalytic degradation of nitro explosives [J]. Inorganic Chemistry Frontiers20218(3): 777-786.

[29]

CAO PZHANG Z CBAI Xet al. Complecting the BiOCl nano-roundels based hollow microbasket induced by chitosan for dramatically enhancing photocatalytic activity [J]. Journal of Molecular Structure20221254: 132339.

[30]

LI Y JSONG Z GYAO Let al. Morphology/dimensionality induced tunable upconversion luminescence of BiOCl:Yb3+/Er3+ nano/microcrystals: intense single-band red emission and underlying mechanisms [J]. CrystEngComm201820: 2850-2860.

[31]

SONG J KZHANG ZZHI S Set al. Oxygen-vacancy-rich BiOCl with 3D network structure for enhanced photocatalytic CO2 reduction and antibiotic degradation [J]. Journal of the Taiwan Institute of Chemical Engineers2021128: 380-387.

[32]

HAN XDONG S YYU C Fet al. Controllable synthesis of Sn-doped BiOCl for efficient photocatalytic degradation of mixed-dye wastewater under natural sunlight irradiation [J]. Journal of Alloys and Compounds2016685:997-1007.

[33]

CHEN Y BTANG X LZHONG J Bet al. Fabrication of tunable oxygen vacancies on BiOCl modified by spiral carbon fiber for highly efficient photocatalytic detoxification of typical pollutants [J]. Applied Surface Science2022578: 152122.

[34]

XU D YFENG H NDONG Y Let al. Enhanced molecular oxygen activation on (001) facets of Zn-doped BiOCl nanosheets for ciprofloxacin degradation [J]. Advanced Materials Interfaces20207(15): 2000548.

[35]

ZHANG JZHU KZHU Y Ket al. Enhanced photocatalytic degradation of tetracycline hydrochloride by Al-doped BiOCl microspheres under simulated sunlight irradiation [J]. Chemical Physics Letters2020750: 137483.

[36]

LONG Z QWANG H LHUANG K Wet al. Di-functional Cu2+-doped BiOCl photocatalyst for degradation of organic pollutant and inhibition of cyanobacterial growth [J]. Journal of Hazardous Materials2022424: 127554.

[37]

PARE BSARWAN BJONNALAGADDA S B. Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition [J]. Applied Surface Science2011258(1): 247-253.

[38]

MOKHTARI FTAHMASEBI N. Hydrothermal synthesis of W-doped BiOCl nanoplates for photocatalytic degradation of rhodamine B under visible light [J]. Journal of Physics and Chemistry of Solids2020149: 109804.

[39]

ZHONG SWANG XWANG Yet al. Preparation of Y3+-doped BiOCl photocatalyst and its enhancing effect on degradation of tetracycline hydrochloride wastewater [J]. Journal of Alloys and Compounds2020843:155598.

[40]

MA S SLI QCAI Z Let al. Facile fabrication of ZnO/N-doped helical carbon nanotubes composites with enhanced photocatalytic activity toward organic pollutant degradation [J]. Applied Organometallic Chemistry201832(1): e3966.

[41]

ZHU L PWANG L LBING N Cet al. In situ synthesis of N-doped carbon nanotubes-BiOCl nanocomposites and their synergistic photocatalytic performance [J]. RSC Advances20166: 2926-2934.

[42]

JIANG Z YLIU Y YJING Tet al. One-pot solvothermal synthesis of S doped BiOCl for solar water oxidation [J]. RSC Advances20155(58): 47261-47264.

[43]

YU J HWEI BZHU Let al. Flowerlike C-doped BiOCl nanostructures: facile wet chemical fabrication and enhanced UV photocatalytic properties [J]. Applied Surface Science2013284(1): 497-502.

[44]

YU C LHE H BFAN Q Zet al. Novel B-doped BiOCl nanosheets with exposed (001) facets and photocatalytic mechanism of enhanced degradation efficiency for organic pollutants [J]. Science of the Total Environment2019694: 133727.

[45]

CAO J YCEN W LJING Yet al. P-doped BiOCl for visible light photodegradation of tetracycline: an insight from experiment and calculation [J]. Chemical Engineering Journal2022435: 134683.

[46]

ZHANG S JWANG D YSONG L Yet al. A novel F-doped BiOCl photocatalyst with enhanced photocatalytic performance [J]. Materials Chemistry & Physics2016173: 298-308.

[47]

LI PQU JWU Jet al. Calcination-induced oxygen vacancies enhancing the photocatalytic performance of a recycled Bi2O3/BiOCl heterojunction nanosheet [J]. ACS Omega20227(50): 46250-46259.

[48]

SHI BYIN HLI Tet al. Synergistically enhanced visible light photocatalytic activity by surface plasmon and facet-dependent oxygen vacancy on Ag/BiOCl [J]. Materials Technology201632(7): 415-423.

[49]

SHEN QWANG J NXU Bet al. Photoinduced defect engineering: enhanced photocatalytic performance of 3D BiOCl nanoclusters with abundant oxygen vacancies [J]. CrystEngComm202123: 1305-1311.

[50]

HOU W DYANG JXU H Met al. Syntheses of nymphaea-like BiOCl with oxygen vacancies for effective removal of tetracycline hydrochloride [J]. CrystEngComm202022: 3943-3955.

[51]

WANG C YZHANG XQIU H Bet al. Photocatalytic degradation of bisphenol A by oxygen-rich and highly visible-light responsive Bi12O17Cl2 nanobelts [J]. Applied Catalysis B2017200: 659-665.

[52]

YIN B XFANG Z YLUO B Fet al. Facile preparation of Bi24O31Cl10 nanosheets for visible-light-driven photocatalytic degradation of tetracycline hydrochloride [J]. Catalysis Letters2017147: 2167-2172.

[53]

QU Y QDUAN X F. Progress, challenge and perspective of heterogeneous photocatalysts [J]. Chemical Society Reviews201342: 2568-2580.

[54]

LI H JZHOU YTU W Get al. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance [J]. Advanced Functional Materials201525(7): 998-1013.

[55]

GOGOI H PDEHINGIA ASINGH Aet al. Heterostructured BiOCl-LaOCl S-scheme composites with improved visible-light photocatalytic activity on Rhodamine B dye [J]. Journal of Physics and Chemistry of Solids2023174: 111163.

[56]

LOW J XYU J GJARONIEC Met al. Heterojunction photocatalysts [J]. Advanced Materials201729(20): 1601694.

[57]

FU J WXU Q LLOW J Xet al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst [J]. Applied Catalysis B2019243: 556-565.

[58]

QIU JWANG Y DLIU X. One-pot hydrothermal synthesis of CuBi2O4/BiOCl p–n heterojunction with enhanced photocatalytic performance for the degradation of tetracycline hydrochloride under visible light irradiation [J]. New Journal of Chemistry202246: 2898-2907.

[59]

XIE K FXU S YXU Ket al. BiOCl heterojunction photocatalyst: construction, photocatalytic performance, and applications [J]. Chemosphere2023317: 137823.

[60]

SHEN TSHI XGUO Jet al. Photocatalytic removal of NO by light-drivenMn3O4/BiOCl heterojunction photocatalyst: optimization and mechanism [J]. Chemical Engineering Journal2021408: 128014.

[61]

GUO Y RQI C LLU Bet al. Enhanced hydrogen production from water splitting by Sn-doped ZnO/BiOCl photocatalysts and Eosin Y sensitization [J]. International Journal of Hydrogen Energy202247(1): 228-241.

[62]

HUANG YCHEN FGUAN Z Pet al. S-scheme BiOCl/MoSe2 heterostructure with enhanced photocatalytic activity for dyes and antibiotics degradation under sunlight irradiation [J]. Sensors202222(9): 3344.

[63]

YUAN X XYANG J YYAO Y Yet al. Preparation, characterization and photodegradation mechanism of 0D/2D Cu2O/BiOCl S-scheme heterojunction for efficient photodegradation of tetracycline [J]. Separation and Purification Technology2022291: 120965.

[64]

WANG S SLIANG XLV Y Ket al. Electric field coupling in the S‑scheme CdS/BiOCl heterojunction for boosted charge transport toward photocatalytic CO2 reduction [J]. ACS Applied Energy Materials20225: 1149-1158.

[65]

XIE M ZFENG Y JFU X Det al. Phosphate-bridged TiO2-BiVO4 nanocomposites with exceptional visible activities for photocatalytic water splitting [J]. Journal of Alloys and Compounds2015631: 120-124.

[66]

LI H FYU H TQUAN Xet al. Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (metal=Cu, Ag, Au) [J]. Applied Materials & Interfaces20168(3): 2111-2119.

[67]

YIN W JBAI L JZHU Y Zet al. Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution [J]. Applied Materials & Interfaces20168(35): 23133-23142.

[68]

WANG XZHU J QFU X Het al. Boosted visible-light photocatalytic performance of Au/BiOCl/BiOI by high-speed spatial electron transfer channel [J]. Journal of Alloys and Compounds2022890: 161736.

[69]

YE LWEN Z H. ZnIn2S4 nanosheets decorating WO3 nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation [J]. International Journal of Hydrogen Energy201944(7): 3751-3759.

[70]

LIN LHUANG S YZHU Y Xet al. Construction of CdS/MoS2 heterojunction from core-shell MoS2@Cd-MOF for efficient photocatalytic hydrogen evolution [J]. Dalton Transactions201948: 2715-2721.

[71]

BERA SGHOSH SMAIYALAGAN Tet al. Band edge engineering of BiOX/CuFe2O4 heterostructures for efficient water splitting [J]. ACS Applied Energy Materials20225(3): 3821-3833.

[72]

SUN D FZHANG MHUANG Let al. Intermediate products driven one-pot in-situ synthesis of BiOCl/WO3 heterojunction with enhanced photocatalytic hydrogen and oxygen evolution for potential industrial applications [J]. Journal of Alloys and Compounds2023969: 172433.

[73]

MIDILLI A, AY M, DINCER Iet al. On hydrogen and hydrogen energy strategies Ⅰ: current status and needs [J]. Renewable and Sustainable Energy Reviews20059(3): 255-271.

[74]

XU K QXU D FLI Z Fet al. Enhanced visible-light photocatalytic degradation of ciprofloxacin hydrochloride by bulk iodine doped BiOCl with rich oxygen vacancy [J]. Applied Surface Science2022578: 152083.

[75]

XU ZGU Y YAN Y Ret al. P123-modified synthesis of BiOCl nanosheet/bismuth nitrate heterojunctions for photocatalytic pollutant degradation [J]. ACS Applied Nano Materials20225(1): 931-938.

[76]

WANG H TJIANG X YQI Yet al. Engineering bandgap structure of BiOCl nanoplates with oxygen vacancies for accelerated photocatalytic degradation of Rhodamine B [J]. Journal of Alloys and Compounds2022910: 164860.

[77]

WANG L SYIN H SWANG Set al. Ni2+-assisted catalytic one-step synthesis of Bi/BiOCl/Bi2O2CO3 heterojunction with enhanced photocatalytic activity under visible light [J]. Applied Catalysis B2022305: 121039.

[78]

HONG X DLI YWANG Xet al. Carbon nanosheet/MnO2/BiOCl ternary composite for degradation of organic pollutants [J]. Journal of Alloysand Compounds2021891: 162090.

[79]

HUANG W DXIAO X YLU M Let al. In-situ fabrication of novel BiOCl/Bi5O7I 2D/3D heterostructures with enhanced photocatalytic activity [J]. Journal of Alloys and Compounds2022895: 162669.

[80]

XIAO X YLU M LZHANG Z Y. Novel Z-scheme 2D/2D Bi4O5Br2/BiOCl heterojunction with enhanced photocatalytic activity for RhB degradation [J]. Journal of Chemical Technology and Biotechnology202297(5): 1280-1292.

[81]

YIN Y XYAO YQIAN X Yet al. Fabrication of Fe/BiOCl/RGO with enhanced photocatalytic degradation of ciprofloxacin under visible light irradiation [J]. Materials Science in Semiconductor Processing2022140: 106384.

[82]

LIU Z BYU X JGAO P Het al. Preparation of BiOCl/Cu2O composite particles and its photocatalytic degradation of moxifloxacin [J]. Optical Materials2022128: 112432.

[83]

李碧秋, 李希成, 熊俊夫, . 铋系光电催化剂降解水中有机污染物的研究进展 [J]. 材料工程202452(6): 92-108.

[84]

LI B QLI X CXIONG J Fet al. Progress on degradation of organic pollutants in water by bismuth-based photoelectrocatalysts [J]. Journal of Materials Engineering202452(6): 92-108.

[85]

蔡文宇, 刘成宝, 陈丰, . g-C3N4/CeO2/BiOBr三相复合材料的制备及其可见光催化降解RhB性能 [J]. 材料工程202351(2): 131-140.

[86]

CAI W YLIU C BCHEN Fet al. Preparation of g-C3N4/CeO2/BiOBr composite and its photocatalytic degradation property for RhB under visible light [J]. Journal of Materials Engineering202351(2): 131-140.

[87]

FU J WJIANG K XQIU X Qet al. Product selectivity of photocatalytic CO2 reduction reactions [J]. Materials Today202032: 222-243.

[88]

CONCEPCION J JHOUSE R LPAPANIKOLAS J Met al. Chemical approaches to artificial photosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America2012109: 15560-15564.

[89]

INOUE TFUJISHIMA AKONISHI Set al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders [J]. Nature1979277: 637-638.

[90]

SONG SSONG HLI L Met al. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen [J]. Nature Catalysis20214: 1032-1042.

[91]

SONG YYE C HYU Xet al. Electron-induced enhanced interfacial interaction of the CuO/BiOCl heterostructure for boosted CO2 photoreduction performance under simulated sunlight [J]. Applied Surface Science2022583:152463.

[92]

GONG S WZHU G QWANG Ret al. Synergistically boosting highly selective CO2-to-CO photoreduction over BiOCl nanosheets via in-situ formation of surface defects and non-precious metal nanoparticles [J]. Applied Catalysis B2021297: 120413.

[93]

HIRAKAWA HHASHIMOTO MSHIRAISHI Yet al. Selective nitrate-to-ammonia transformation on surface defects of titanium dioxide photocatalysts [J]. ACS Catalysis20177(5): 3713-3720.

[94]

LI P SZHOU Z AWANG Qet al. Visible light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies [J]. Journal of the American Chemical Society2020142(28): 12430-12439.

[95]

SHEN Z FLI F FLU J Ret al. Enhanced N2 photofixation activity of flower-like BiOCl by in situ Fe(Ⅲ) doped as an activation center [J]. Journal of Colloid and Interface Science2021584: 174-181.

[96]

ZHANG NLI L GSHAO Qet al. Fe-doped BiOCl nanosheets with light-switchable oxygen vacancies for photocatalytic nitrogen fixation [J]. ACS Applied Energy Materials20192(12): 8394-8398.

[97]

GUO LHAN X XZHANG K Let al. In-situ construction of 2D/2D ZnIn2S4/BiOCl heterostructure with enhanced photocatalytic activity for N2 fixation and phenol degradation [J]. Catalysts20199(9): 729.

[98]

CAI JMAIMAITIZI HOKITSU Ket al. Z-type heterojunction of graphene quantum dots/g-C3N4/BiOCl with excellent photocatalytic performance for nitrogen fixation [J]. International Journal of Energy Research202246(9): 12147-12159.

[99]

XIAO C LWANG H PZHANG Let al. Enhanced photocatalytic nitrogen fixation on MoO2/BiOCl composite [J]. ChemCatChem201911(24): 6467-6472.

[100]

LIU JLI Y PHUANG L Yet al. Fabrication of novel narrow/wide band gap Bi4O5I2/BiOCl heterojunction with high antibacterial and degradation efficiency under LED and sunlight [J]. Applied Surface Science2021567: 150713.

[101]

WU DYE L QWANG Wet al. Surfactant-free self-templating construction of BiOCl/BiO1.84H0.08 nanodisc heterostructures with visible-light-driven antibacterial activity [J]. ChemistrySelect20161(15): 5049-5056.

[102]

QI Y MCONTE MANPO Met al. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts [J]. Chemical Reviews2021121(21): 13051-13085.

[103]

赵冬冬, 王冰, 崇玉亮, . 二维共价有机框架材料光催化和电催化研究进展 [J]. 材料工程202351(5): 58-75.

[104]

ZHAO D DWANG BCHONG Y Let al. Research progress in photocatalysis and electrocatalysis of two-dimensional covalent organic framework materials [J]. Journal of Materials Engineering202351(5): 58-75.

[105]

LI HQIN FYANG Z Pet al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies [J]. Journal of the American Chemical Society2017139: 3513-3521.

[106]

WU Y HYUAN BLI M Ret al. Well-defined BiOCl colloidal ultrathin nanosheets: synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines [J]. Chemical Science20156: 1873-1878.

基金资助

辽宁省自然科学基金博士科研启动基金(2022-BS-311)

2024年辽宁省教育厅高等学校基本科研项目(LJ212410154057)

AI Summary AI Mindmap
PDF (2693KB)

262

访问

0

被引

详细

导航
相关文章

AI思维导图

/