风湿性疾病与门静脉高压

申梨 ,  段维佳 ,  吕婷婷 ,  贾继东

临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (05) : 812 -816.

PDF (564KB)
临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (05) : 812 -816. DOI: 10.12449/JCH250503
专家论坛

风湿性疾病与门静脉高压

作者信息 +

Rheumatic diseases and portal hypertension

Author information +
文章历史 +
PDF (576K)

摘要

风湿性疾病是一类以免疫系统异常为特征的慢性疾病,而门静脉高压则发生于各种原因所致的门静脉系统血流增多或阻力增加,或肝静脉系统回流受阻。风湿性疾病及其治疗药物均可导致非肝硬化性门静脉高压。风湿性疾病相关的高凝状态可导致门静脉及肝静脉系统血栓形成,肝内门静脉系统和肝窦内皮系统的损伤可导致门脉肝窦血管病及肝窦阻塞综合征。治疗风湿性疾病的药物也可通过肝实质损伤导致肝纤维化及肝硬化,或通过对肝脏血管内皮的损伤导致非肝硬化性门静脉高压。本文将重点介绍常见的风湿性疾病及其治疗药物导致门静脉高压的机制及特点,旨在为其临床诊治及随访监测提供思路和帮助。

Abstract

Rheumatic diseases are a group of chronic disorders characterized by abnormalities in the immune system, while portal hypertension occurs due to increased blood flow or heightened resistance in the portal venous system or obstruction of hepatic venous outflow. Both rheumatic diseases and their medications can lead to noncirrhotic portal hypertension. The hypercoagulable state associated with rheumatic diseases can result in thrombosis within the portal and hepatic venous systems, and damage to the intrahepatic portal system and hepatic sinusoidal endothelial system can lead to porto-sinusoidal vascular disease and hepatic sinusoidal obstruction syndrome. Moreover, drugs used for the treatment of rheumatic diseases may cause liver parenchymal injury, which further leads to liver fibrosis and cirrhosis, or they may damage the hepatic vascular endothelium and thus cause noncirrhotic portal hypertension. This article elaborates on the mechanisms and characteristics by which common rheumatic diseases and their therapeutic agents lead to portal hypertension, in order to provide insights and assistance for clinical diagnosis, treatment, and follow-up monitoring.

关键词

风湿性疾病 / 门静脉高压 / 诊断

Key words

Rheumatic Diseases / Portal Hypertension / Diagnosis

引用本文

引用格式 ▾
申梨,段维佳,吕婷婷,贾继东. 风湿性疾病与门静脉高压[J]. 临床肝胆病杂志, 2025, 41(05): 812-816 DOI:10.12449/JCH250503

登录浏览全文

4963

注册一个新账户 忘记密码

门静脉高压症(portal hypertension, PHT)是指各种原因导致门静脉及其属支血管内压力升高,伴或不伴脾大、脾功能亢进、食管胃静脉曲张、腹水等并发症的临床综合征。尽管肝硬化是PHT最主要的病因,但非肝硬化性门静脉高压(noncirrhotic portal hypertension, NCPH)在临床上逐渐增多,占比已达10%~30%1。NCPH并非单一疾病,而是对肝硬化以外原因所导致门静脉高压的统称,其主要发生机制为门静脉系统血流增加或阻力升高(肝前性及肝内窦前性门静脉高压),或肝静脉系统回流受阻(肝内窦后性及肝后性门静脉高压)。前者主要包括:门静脉血流增加(如非肝性脾肿大、肝动静脉瘘)、肝前门静脉狭窄或栓子形成(如血栓或癌栓)、肝内窦前性门静脉分支病变[如先天性肝纤维化及门脉肝窦血管病(porto-sinusoidal vascular disease, PSVD)];后者主要包括:肝内窦后性病变(如肝窦阻塞综合征)、肝静脉或下腔静脉肝段狭窄(如布加综合征)及回心血流受阻(如缩窄性心包炎或充血性心力衰竭)等。
风湿性疾病如类风湿关节炎、系统性红斑狼疮、自身免疫性肝炎、炎症性肠病等,是NCPH的常见病因。当风湿性疾病患者出现脾大、血小板减少、肝生化指标异常时,应警惕合并NCPH的可能,必要时可行肝组织活检以明确诊断。值得注意的是,部分抗风湿性药物亦可引起NCPH。本文重点梳理常见风湿性疾病及其治疗药物所导致的NCPH,以期为临床提供诊治思路。

1 常见风湿性疾病与NCPH

风湿性疾病与NCPH关系紧密,主要发生机制包括高凝状态引起的门静脉血栓形成、肝静脉或下腔静脉血栓形成、结节再生性增生(nodular regenerative hyperplasia, NRH),以及PSVD。PSVD是近年提出的概念2,是对既往被广泛使用的特发性非肝硬化性门静脉高压(INCPH)的扩展,指的是在组织学上存在肝内门静脉闭塞性病变及相关改变。其原发性病理改变包括门静脉壁的增厚、管腔狭窄甚至闭塞;继发性病理改变包括汇管区周围及肝实质中出现管壁变薄、管腔扩张的异常静脉,NRH和不全间隔纤维化。PSVD早期可能没有门静脉高压的明显征象,而后逐渐出现门静脉高压的相关表现,如影像学上的门体侧支循环形成,内镜检查显示的食管胃静脉曲张,以及脾大和血小板减少等。

有研究显示,多种风湿性疾病肝组织活检存在如NRH等PSVD的病理表现3。故有学者建议将PSVD纳入自身免疫性和免疫介导的疾病谱中进行考量4-5。一项针对2 500余例个体的尸检研究显示,系统性红斑狼疮、系统性硬化症、类风湿关节炎及结节性多动脉炎患者NRH发生率较高,推测肝动脉炎可能是引发后续血管改变(导致门静脉闭塞和NRH)的初始触发因素3。另一项分析了160例不同风湿性疾病患者的肝组织学研究显示,NRH患病率为4.4%,其中系统性红斑狼疮、系统性硬化症和结节性多动脉炎患者的发生率最高6

1.1 类风湿关节炎

类风湿关节炎是一类以关节病变为特征的自身免疫性疾病,其病理基础为滑膜炎症,可侵蚀关节软骨和骨组织。类风湿关节炎通常不直接累及肝脏,但可导致NCPH7,尤其是在Felty综合征(中性粒细胞减少、脾肿大和类风湿关节炎三联征)患者中更常见8。约20%的Felty综合征患者在病程中出现门静脉高压表现9,脾肿大所伴随的脾静脉血流量异常增多是关键原因之一,在脾切除术后监测中被观察到门静脉压力的显著下降亦支持这一观点10

然而,肝组织活检研究证实,Felty综合征患者门静脉高压的发生机制不仅涉及脾静脉血流增加,后向血管阻力升高同样是重要因素。此类患者肝组织活检结果显示出PSVD的典型特征8,其中以NRH最为常见,而NRH对肝内小静脉和窦状隙的压迫最终可导致门静脉高压11。因此,对于类风湿关节炎患者,特别是合并Felty综合征患者,当病程中出现肝功能异常或门静脉高压的表现时,需及时评估肝脏及相关并发症,必要时行肝组织活检以明确是否存在PSVD。

1.2 系统性红斑狼疮

系统性红斑狼疮累及肝脏时,常表现为轻度转氨酶升高、胆汁淤积、狼疮性肝炎,少数情况下可导致肝血管相关病变12。系统性红斑狼疮相关血管炎较少累及肝内门静脉系统,但其高凝状态可导致肝脏动静脉血管受累,并进一步导致门静脉血栓、布加综合征等,引起NCPH13-14

系统性红斑狼疮亦可合并PSVD相关肝脏病变。日本一项纳入了52例系统性红斑狼疮患者的研究显示,肝组织活检中NRH的发生率为5.6%15,窦间隙和门静脉小分支中的抗原-抗体免疫复合物沉积可能是NRH发生的基础16-17。目前系统性红斑狼疮合并PSVD/INCPH的研究以个案报道为主18,其发病机制尚不清楚,治疗方面亦存在一定的争议和问题。例如,应用糖皮质激素治疗是否会诱发或加重门静脉血栓,进而导致门静脉高压进展14;系统性红斑狼疮的疾病活动性是否为合并PSVD患者进展至临床显著门静脉高压的风险因素4,上述问题亟需更大规模的患者队列研究予以阐明。

1.3 抗磷脂抗体综合征

抗磷脂抗体综合征是一类以反复血栓形成和病理妊娠为主要临床特征,并伴有血清抗磷脂抗体(aPL)阳性的系统性自身免疫性疾病。门静脉血栓是抗磷脂抗体综合征罕见、严重和高度异质性的表型,包括门静脉、肠系膜静脉和脾静脉血栓,并可能作为首发血栓事件出现19。门静脉血栓早期常缺乏显著临床症状,但随着疾病进展,可引发脾功能亢进、静脉曲张破裂出血和腹水等严重并发症。研究发现,aPL双阳性(抗心磷脂抗体、抗β2糖蛋白Ⅰ抗体及狼疮抗凝物中任意2项阳性)是患者发生门静脉血栓的高危因素19,而aPL三阳性(上述3项抗体均阳性)患者,即使接受抗凝治疗,仍存在血栓复发的风险20

同时,aPL也与PSVD发病密切相关4,在多达77%以NRH为特征的PSVD患者中可检测到aPL阳性21。有学者提出“二次打击”学说,以解释aPL引发血栓形成的机制22:内皮细胞损伤为第一次打击,血栓形成为第二次打击;在内皮完整的情况下,aPL不会直接促进血栓形成23,因此,抗磷脂抗体综合征患者门静脉血栓的发生是否与PSVD导致的门静脉微循环障碍相关,仍有待进一步探讨。

1.4 系统性硬化症

系统性硬化症是一种以弥漫性血管病变和多器官纤维化为特征的自身免疫性结缔组织病,其病理机制涉及内皮细胞功能受损和通透性增加,导致微血管收缩和血小板聚集。

尽管肝脏微血管通常不是系统性硬化症的主要靶点,但已有多项研究报道系统性硬化症合并NCPH的病例24-25。系统性硬化症患者的NCPH与PSVD密切相关。2018年一项国外研究总结了17篇文献中系统性硬化症合并NRH的病例,提示NRH是系统性硬化症的罕见并发症26,而抗着丝点抗体阳性可能是其主要危险因素之一27。值得注意的是,在原发性胆汁性胆管炎患者中,抗着丝点抗体阳性同样被证实是门静脉高压进展的独立危险因素28

此外,内皮细胞-间质细胞转化可能是系统性硬化症患者并发NCPH的机制之一,TGF-β(转化生长因子-β)/Smad信号通路的异常激活可诱导门静脉小分支内皮细胞发生表型转化,伴随内皮细胞周围胶原沉积显著增加,从而引发小门静脉周围纤维化,导致微血管狭窄和血流受阻29。总之,系统性硬化症可能通过免疫介导的反应、信号通路的异常激活从而引发PSVD,其复杂的发病机制值得进一步深入研究。

2 抗风湿药物与NCPH

抗风湿药物亦可导致门静脉高压。一类如硫唑嘌呤、6-硫鸟嘌呤可通过直接的血管损伤作用导致门静脉高压;一类如甲氨蝶呤、来氟米特等通过对肝脏的毒性作用导致肝纤维化、肝硬化及门静脉高压。鉴于风湿性疾病治疗药物种类繁多,本文仅对常用的经典药物所致门静脉高压进行简要介绍。

2.1 硫唑嘌呤

硫唑嘌呤广泛应用于风湿性疾病,如类风湿关节炎、系统性红斑狼疮、炎症性肠病等疾病的治疗。其肝脏毒性表现包括轻度、短暂且无症状的血清氨基转移酶水平升高,在开始治疗的第1年内出现急性胆汁淤积性损伤,以及在开始使用硫唑嘌呤后1~5年内可能出现肝血管病变、肝窦阻塞或NRH为特征的慢性肝损伤。

硫唑嘌呤与门静脉高压的关系最早在肝脏和肾脏移植术后长期应用硫唑嘌呤的患者中被发现30-31,该药可导致肝窦阻塞综合征(肝小静脉闭塞症),主要表现为门静脉高压、肝大、血清胆红素升高、腹腔积液等症状,部分患者病程进展迅速。1989年,Lemley等32报道了1例采用硫唑嘌呤治疗无肝脏基础疾病的类风湿关节炎患者并发显著门静脉高压症状,经肝组织活检证实存在肝小静脉非血栓性硬化表现,在停用硫唑嘌呤且继续其他药物治疗的情况下,门静脉高压未再进展。此外,在系统性红斑狼疮、多发性硬化症和克罗恩病患者中,也有使用硫唑嘌呤导致门静脉高压且停药后症状好转或停止进展的个案报道33-35

硫唑嘌呤引起肝血管损伤的机制可能与肝窦内皮细胞内的谷胱甘肽耗竭相关36。硫唑嘌呤在肝脏内的代谢过程中需谷胱甘肽S-转移酶参与,这一反应消耗谷胱甘肽,导致其在细胞内快速耗竭。与具有较强谷胱甘肽合成能力的肝细胞不同,肝窦内皮细胞的谷胱甘肽合成能力有限,因此更易受此机制影响而受到损伤。

综上,临床应用硫唑嘌呤治疗的患者需警惕其潜在的门静脉高压风险,必要时应通过肝组织活检明确诊断。

2.2 6-硫鸟嘌呤

6-硫鸟嘌呤与硫唑嘌呤同属于硫嘌呤类药物,常用于炎症性肠病的免疫治疗,也作为非一线药物用于系统性红斑狼疮、类风湿关节炎的治疗。6-硫鸟嘌呤与PSVD关系密切,NRH是最常见的组织学表现37

6-硫鸟嘌呤引起NRH可能与剂量相关。6-硫鸟嘌呤在体内可代谢生成活性产物6-硫鸟嘌呤核苷酸及6-甲基巯基嘌呤,而这两种产物的浓度取决于给药剂量和相关通路的酶活性38-39。研究显示,高剂量6-硫鸟嘌呤(>40 mg/d)治疗时NRH的发生率高达62%40,而采用低剂量治疗的队列研究中未见特异性NRH形成41-42。因此,低剂量6-硫鸟嘌呤治疗相对安全,但对于硫嘌呤甲基转移酶活性不足的患者需警惕NRH相关的门静脉高压并发症。

2.3 甲氨蝶呤

甲氨蝶呤目前广泛应用于银屑病和类风湿关节炎等疾病的治疗,其可能导致肝纤维化、肝硬化,进而出现门静脉高压。甲氨蝶呤引发肝损伤与剂量相关,总剂量超过1.5~2 g时即有肝纤维化和肝硬化的风险。因此,对于规律接受甲氨蝶呤治疗的患者应定期监测肝功能。

然而,近年有学者对于甲氨蝶呤的肝毒性产生异议,认为其肝毒性作用可能被高估43-45。多项队列研究表明,肝纤维化进展可能与甲氨蝶呤在体内的累积无关,而与既往研究中被忽视的代谢相关脂肪性肝病相关46-47。一些病理生理学观点可以解释甲氨蝶呤导致脂肪肝恶化的原因48,其中最具说服力的是甲氨蝶呤可抑制核因子-E2相关因子2,并加重肝细胞叶酸缺乏,进而引起线粒体功能、肝细胞脂肪代谢功能障碍;而肝细胞内有毒脂质和活性氧的积累可促进肝细胞凋亡及炎症反应。因此,合并脂肪肝的患者在使用甲氨蝶呤的过程中需严密监测,警惕肝脏原发疾病进展。

2.4 来氟米特

来氟米特广泛用于类风湿关节炎、银屑病等疾病的治疗。早在2010年,来氟米特即被美国食品药品监督管理局在药品标签中警示了严重肝损伤风险。其肝损伤通常为轻度转氨酶升高,发生率为2%~13%,导致需住院治疗的药物性肝损伤发生率仅为0.02%。然而,也有最终因肝功能衰竭死亡的病例报道49。尽管来氟米特相关的肝损伤通常表现为急性肝炎,停药后大部分患者肝功能可得到恢复,但是也存在部分患者在单用来氟米特或与甲氨蝶呤联用时出现肝纤维化和肝硬化表现的报道50-51。小鼠实验表明,来氟米特可能通过上调肝脏内TGF-β表达导致肝星状细胞激活,从而参与肝纤维化的进展52-53。因此,临床也需关注其潜在的致肝纤维化、肝硬化风险。FIB-4或APRI等可用于初步筛查肝纤维化,对高危患者应定期随访测定肝弹性指标,以早期识别来氟米特的副作用。

3 小结

尽管风湿性疾病合并门静脉高压,尤其是NCPH并非临床常见,但是这些疾病本身和治疗药物均可导致门静脉高压的发生与发展。了解常见风湿性疾病及其治疗药物所导致门静脉高压的机制及特点,并对高危患者进行系统监测,有助于及时识别PHT的早期征象并避免其严重并发症,从而改善患者的长期预后。

参考文献

[1]

KHANNA R, SARIN SK. Noncirrhotic portal hypertension: Current and emerging perspectives[J]. Clin Liver Dis, 2019, 23(4): 781-807. DOI: 10.1016/j.cld.2019.07.006 .

[2]

HE FL, JIA JD. Research advances in porto-sinusoidal vascular disease[J]. J Clin Hepatol, 2024, 40(1):19-23. DOI: 10.12449/JCH240103 .

[3]

何福亮, 贾继东. 门脉肝窦血管病的研究进展[J]. 临床肝胆病杂志, 2024, 40(1): 19-23. DOI: 10.12449/JCH240103 .

[4]

WANLESS IR. Micronodular transformation (nodular regenerative hyperplasia) of the liver: A report of 64 cases among 2, 500 autopsies and a new classification of benign hepatocellular nodules[J]. Hepatology, 1990, 11(5): 787-797. DOI: 10.1002/hep.1840110512 .

[5]

TONUTTI A, PUGLIESE N, CERIBELLI A, et al. The autoimmune landscape of Porto-sinusoidal vascular disorder: What the rheumatologist needs to know[J]. Semin Arthritis Rheum, 2024, 67: 152467. DOI: 10.1016/j.semarthrit.2024.152467 .

[6]

CERDA REYES E, GONZÁLEZ-NAVARRO EA, MAGAZ M, et al. Autoimmune biomarkers in Porto-sinusoidal vascular disease: Potential role in its diagnosis and pathophysiology[J]. Liver Int, 2021, 41(9): 2171-2178. DOI: 10.1111/liv.14997 .

[7]

MATSUMOTO T, KOBAYASHI S, SHIMIZU H, et al. The liver in collagen diseases: Pathologic study of 160 cases with particular reference to hepatic arteritis, primary biliary cirrhosis, autoimmune hepatitis and nodular regenerative hyperplasia of the liver[J]. Liver, 2000, 20(5): 366-373. DOI: 10.1034/j.1600-0676.2000.020005366.x .

[8]

GORITSAS C, ROUSSOS A, FERTI A, et al. Nodular regenerative hyperplasia in a rheumatoid arthritis patient without Felty’s syndrome[J]. J Clin Gastroenterol, 2002, 35(4): 363-364. DOI: 10.1097/00004836-200210000-00020 .

[9]

YANG S, QUAN M, LI Y, et al. Porto-sinusoidal vascular disease as the cause of portal hypertension in Felty’s syndrome: A case report and literature review[J]. Biomed Res Int, 2020, 2020: 2618260. DOI: 10.1155/2020/2618260 .

[10]

ROSENSTEIN ED, KRAMER N. Felty’s and Pseudo-Felty’s syndromes[J]. Semin Arthritis Rheum, 1991, 21(3): 129-142. DOI: 10.1016/0049-0172(91)90002-h .

[11]

STOCK H, KADRY Z, SMITH JP. Surgical management of portal hypertension in Felty’s syndrome: A case report and literature review[J]. J Hepatol, 2009, 50(4): 831-835. DOI: 10.1016/j.jhep.2008.10.035 .

[12]

NOBLE S, LINZ M, CORREIA E, et al. Porto-sinusoidal vascular disease and portal hypertension[J]. Clin Liver Dis, 2024, 28(3): 455-466. DOI: 10.1016/j.cld.2024.03.004 .

[13]

AFZAL W, HAGHI M, HASNI SA, et al. Lupus hepatitis, more than just elevated liver enzymes[J]. Scand J Rheumatol, 2020, 49(6): 427-433. DOI: 10.1080/03009742.2020.1744712 .

[14]

SOLELA G, DABA M. Budd-Chiari syndrome as an initial presentation of systemic lupus erythematosus associated with antiphospholipid syndrome: A case report with review of the literature[J]. Open Access Rheumatol, 2023, 15: 139-143. DOI: 10.2147/OARRR.S425535 .

[15]

IMABAYASHI K, NAKANO K, IWATA S, et al. A case of systemic lupus erythematosus with marked ascites due to idiopathic non-cirrhotic portal hypertension[J]. Mod Rheumatol Case Rep, 2021, 5(2): 285-291. DOI: 10.1080/24725625.2021.1904607 .

[16]

MATSUMOTO T, YOSHIMINE T, SHIMOUCHI K, et al. The liver in systemic lupus erythematosus: Pathologic analysis of 52 cases and review of Japanese Autopsy Registry Data[J]. Hum Pathol, 1992, 23(10): 1151-1158. DOI: 10.1016/0046-8177(92)90033-y .

[17]

YANG QB, HE YL, PENG CM, et al. Systemic lupus erythematosus complicated by noncirrhotic portal hypertension: A case report and review of literature[J]. World J Clin Cases, 2018, 6(13): 688-693. DOI: 10.12998/wjcc.v6.i13.688 .

[18]

BESSONE F, POLES N, ROMA MG. Challenge of liver disease in systemic lupus erythematosus: Clues for diagnosis and hints for pathogenesis[J]. World J Hepatol, 2014, 6(6): 394-409. DOI: 10.4254/wjh.v6.i6.394 .

[19]

SUÁREZ-DÍAZ S, GARCÍA-CALONGE M, MENDOZA-PACAS G, et al. Non-cirrhotic portal hypertension in systemic lupus erythematosus[J]. Cureus, 2023, 15(2): e35494. DOI: 10.7759/cureus.35494 .

[20]

YOU HX, ZHAO JL, HUANG C, et al. Early initiation of anticoagulation improves the long-term prognosis in patients with antiphospholipid syndrome associated portal vein thrombosis[J]. Front Med (Lausanne), 2021, 8: 630660. DOI: 10.3389/fmed.2021.630660 .

[21]

PENGO V, RUFFATTI A, LEGNANI C, et al. Clinical course of high-risk patients diagnosed with antiphospholipid syndrome[J]. J Thromb Haemost, 2010, 8(2): 237-242. DOI: 10.1111/j.1538-7836.2009.03674.x .

[22]

KLEIN R, GOLLER S, BIANCHI L. Nodular regenerative hyperplasia (NRH) of the liver-a manifestation of ‘organ-specific antiphospholipid syndrome’?[J]. Immunobiology, 2003, 207(1): 51-57. DOI: 10.1078/0171-2985-00209 .

[23]

MERONI PL, BORGHI MO, RASCHI E, et al. Pathogenesis of antiphospholipid syndrome: Understanding the antibodies[J]. Nat Rev Rheumatol, 2011, 7(6): 330-339. DOI: 10.1038/nrrheum.2011.52 .

[24]

GIANNAKOPOULOS B, KRILIS SA. The pathogenesis of the antiphospholipid syndrome[J]. N Engl J Med, 2013, 368(11): 1033-1044. DOI: 10.1056/NEJMra1112830 .

[25]

YAMAMOTO A, MATSUDA H, HIRAMATSU K, et al. A case of idiopathic portal hypertension accompanying multiple hepatic nodular regenerative hyperplasia in a patient with systemic sclerosis[J]. Clin J Gastroenterol, 2021, 14(3): 820-826. DOI: 10.1007/s12328-021-01348-z .

[26]

TAKAGI K, NISHIO S, AKIMOTO K, et al. A case of systemic sclerosis complicated by idiopathic portal hypertension: Case report and literature review[J]. Mod Rheumatol, 2006, 16(3): 183-187. DOI: 10.1007/s10165-006-0479-1 .

[27]

GRAF L, DOBROTA R, JORDAN S, et al. Nodular regenerative hyperplasia of the liver: A rare vascular complication in systemic sclerosis[J]. J Rheumatol, 2018, 45(1): 103-106. DOI: 10.3899/jrheum.170292 .

[28]

SAIGUSA R, TOYAMA T, ICHIMURA Y, et al. A case of systemic sclerosis complicated with portal hypertension[J]. J Clin Rheumatol, 2021, 27(8S): S668-S669. DOI: 10.1097/rhu.0000000000001633 .

[29]

NAKAMURA M, KONDO H, MORI T, et al. Anti-gp210 and anti-centromere antibodies are different risk factors for the progression of primary biliary cirrhosis[J]. Hepatology, 2007, 45(1): 118-127. DOI: 10.1002/hep.21472 .

[30]

NAKANUMA Y, SATO Y, KIKTAO A. Pathology and pathogenesis of portal venopathy in idiopathic portal hypertension: Hints from systemic sclerosis[J]. Hepatol Res, 2009, 39(10): 1023-1031. DOI: 10.1111/j.1872-034X.2009.00555.x .

[31]

READ AE, WIESNER RH, LABRECQUE DR, et al. Hepatic veno-occlusive disease associated with renal transplantation and azathioprine therapy[J]. Ann Intern Med, 1986, 104(5): 651-655. DOI: 10.7326/0003-4819-104-5-651 .

[32]

EISENHAUER T, HARTMANN H, RUMPF KW, et al. Favourable outcome of hepatic veno-occlusive disease in a renal transplant patient receiving azathioprine, treated by portacaval shunt. Report of a case and review of the literature[J]. Digestion, 1984, 30(3): 185-190. DOI: 10.1159/000199104 .

[33]

LEMLEY DE, DELACY LM, SEEFF LB, et al. Azathioprine induced hepatic veno-occlusive disease in rheumatoid arthritis[J]. Ann Rheum Dis, 1989, 48(4): 342-346. DOI: 10.1136/ard.48.4.342 .

[34]

PRAPROTNIK S, HOCEVAR A, FERLAN-MAROLT V, et al. Azathioprine induced hepatic veno-occlusive disease in systemic lupus erythematosus[J]. Lupus, 2005, 14(6): 493-494. DOI: 10.1191/0961203305lu2143xx .

[35]

MION F, NAPOLEON B, BERGER F, et al. Azathioprine induced liver disease: Nodular regenerative hyperplasia of the liver and perivenous fibrosis in a patient treated for multiple sclerosis[J]. Gut, 1991, 32(6): 715-717. DOI: 10.1136/gut.32.6.715 .

[36]

HOLTMANN M, SCHREINER O, KÖHLER H, et al. Veno-occlusive disease (VOD) in Crohn’s disease (CD) treated with azathioprine[J]. Dig Dis Sci, 2003, 48(8): 1503-1505. DOI: 10.1023/a:1024755521423 .

[37]

DELEVE LD, WANG X, KUHLENKAMP JF, et al. Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: The role of glutathione and relevance to hepatic venoocclusive disease[J]. Hepatology, 1996, 23(3): 589-599. DOI: 10.1002/hep.510230326 .

[38]

BAYOUMY AB, SIMSEK M, SEINEN ML, et al. The continuous rediscovery and the benefit-risk ratio of thioguanine, a comprehensive review[J]. Expert Opin Drug Metab Toxicol, 2020, 16(2): 111-123. DOI: 10.1080/17425255.2020.1719996 .

[39]

de BOER NKH, van BODEGRAVEN AA, JHARAP B, et al. Drug Insight: Pharmacology and toxicity of thiopurine therapy in patients with IBD[J]. Nat Clin Pract Gastroenterol Hepatol, 2007, 4(12): 686-694. DOI: 10.1038/ncpgasthep1000 .

[40]

de BOER NK, MULDER CJ, van BODEGRAVEN AA. Nodular regenerative hyperplasia and thiopurines: the case for level-dependent toxicity[J]. Liver Transpl, 2005, 11(10): 1300-1301. DOI: 10.1002/lt.20554 .

[41]

DUBINSKY MC, VASILIAUSKAS EA, SINGH H, et al. 6-thioguanine can cause serious liver injury in inflammatory bowel disease patients[J]. Gastroenterology, 2003, 125(2): 298-303. DOI: 10.1016/s0016-5085(03)00938-7 .

[42]

de BOER NK, ZONDERVAN PE, GILISSEN LP, et al. Absence of nodular regenerative hyperplasia after low-dose 6-thioguanine maintenance therapy in inflammatory bowel disease patients[J]. Dig Liver Dis, 2008, 40(2): 108-113. DOI: 10.1016/j.dld.2007.10.013 .

[43]

GILISSEN LP, DERIJKS LJ, DRIESSEN A, et al. Toxicity of 6-thioguanine: no hepatotoxicity in a series of IBD patients treated with long-term, low dose 6-thioguanine. Some evidence for dose or metabolite level dependent effects?[J]. Dig Liver Dis, 2007, 39(2): 156-159. DOI: 10.1016/j.dld.2006.10.007 .

[44]

BAFNA P, SAHOO RR, HAZARIKA K, et al. Prevalence of liver fibrosis by Fibroscan in patients on long-term methotrexate therapy for rheumatoid arthritis[J]. Clin Rheumatol, 2021, 40(9): 3605-3613. DOI: 10.1007/s10067-021-05678-8 .

[45]

RUIZ-PONCE M, CUESTA-LÓPEZ L, LÓPEZ-MONTILLA MD, et al. Decoding clinical and molecular pathways of liver dysfunction in Psoriatic Arthritis: Impact of cumulative methotrexate doses[J]. Biomed Pharmacother, 2023, 168: 115779. DOI: 10.1016/j.biopha.2023.115779 .

[46]

di MARTINO V. Methotrexate-induced liver fibrosis: The end of a long-held belief[J]. J Hepatol, 2023, 78(5): 896-897. DOI: 10.1016/j.jhep.2023.02.018 .

[47]

MORI S, ARIMA N, ITO M, et al. Non-alcoholic steatohepatitis-like pattern in liver biopsy of rheumatoid arthritis patients with persistent transaminitis during low-dose methotrexate treatment[J]. PLoS One, 2018, 13(8): e0203084. DOI: 10.1371/journal.pone.0203084 .

[48]

ATALLAH E, GROVE JI, CROOKS C, et al. Risk of liver fibrosis associated with long-term methotrexate therapy may be overestimated[J]. J Hepatol, 2023, 78(5): 989-997. DOI: 10.1016/j.jhep.2022.12.034 .

[49]

DI MARTINO V, VERHOEVEN DW, VERHOEVEN F, et al. Busting the myth of methotrexate chronic hepatotoxicity[J]. Nat Rev Rheumatol, 2023, 19(2): 96-110. DOI: 10.1038/s41584-022-00883-4 .

[50]

ALCORN N, SAUNDERS S, MADHOK R. Benefit-risk assessment of leflunomide: An appraisal of leflunomide in rheumatoid arthritis 10 years after licensing[J]. Drug Saf, 2009, 32(12): 1123-1134. DOI: 10.2165/11316650-000000000-00000 .

[51]

LEE SW, PARK HJ, KIM BK, et al. Leflunomide increases the risk of silent liver fibrosis in patients with rheumatoid arthritis receiving methotrexate[J]. Arthritis Res Ther, 2012, 14(5): R232. DOI: 10.1186/ar4075 .

[52]

AVOUAC J, DEGRAVE R, VERGNEAULT H, et al. Risk of liver fibrosis induced by methotrexate and other rheumatoid arthritis medications according to the Fibrosis-4 Index[J]. Clin Exp Rheumatol, 2022, 40(1): 150-157. DOI: 10.55563/clinexprheumatol/usddjr .

[53]

BILASY SE, ESSAWY SS, MANDOUR MF, et al. Myelosuppressive and hepatotoxic potential of leflunomide and methotrexate combination in a rat model of rheumatoid arthritis[J]. Pharmacol Rep, 2015, 67(1): 102-114. DOI: 10.1016/j.pharep.2014.08.009 .

[54]

ELSHAER RE, TAWFIK MK, NOSSEIR N, et al. Leflunomide-induced liver injury in mice: Involvement of TLR4 mediated activation of PI3K/mTOR/NFκB pathway[J]. Life Sci, 2019, 235: 116824. DOI: 10.1016/j.lfs.2019.116824 .

基金资助

AI Summary AI Mindmap
PDF (564KB)

318

访问

0

被引

详细

导航
相关文章

AI思维导图

/