C1q肿瘤坏死因子相关蛋白3(C1QTNF3)在肝癌中的表达及其对预后的预测价值

金丽莹 ,  王姝涵 ,  杨洋

临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (05) : 934 -941.

PDF (4031KB)
临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (05) : 934 -941. DOI: 10.12449/JCH250520
肝脏肿瘤

C1q肿瘤坏死因子相关蛋白3(C1QTNF3)在肝癌中的表达及其对预后的预测价值

作者信息 +

The expression of C1QTNF3 in liver cancer and its prognostic value

Author information +
文章历史 +
PDF (4127K)

摘要

目的 探究C1q肿瘤坏死因子相关蛋白3(C1QTNF3)在肝癌组织中的表达情况,分析其与患者临床病理特征的关系,并进一步评估其在肝癌预后中的潜在预测价值。 方法 分别于TIMER、UALCAN、TNMplot及GEO数据库收集资料,采用生物信息学分析C1QTNF3基因在泛癌、正常组织与肝癌组织,以及癌组织及其癌旁组织中的表达水平。选取90例肝癌患者的肝癌组织及其癌旁组织标本,收集患者年龄、性别、肿瘤直径、肿瘤数目等临床资料。计量资料组间比较采用成组t检验或配对t检验;计数资料组间比较采用χ2检验。Kaplan-Meier法绘制生存曲线,Log-rank检验分析C1QTNF3表达水平与肝癌患者生存期的关系。Cox回归模型分析影响肝癌患者预后的危险因素,受试者操作特征曲线(ROC曲线)分析不同时间点C1QTNF3表达对肝癌患者预后的预测能力。 结果 生物信息学分析结果显示,C1QTNF3基因在多种恶性肿瘤组织中表达上调,尤其在肝癌组织中(P<0.001);C1QTNF3基因在肝癌组织中的表达量高于正常组织及其癌旁组织(P值均<0.01)。90例肝癌患者免疫组化染色结果显示,C1QTNF3主要表达于细胞质,少量表达于细胞核,且在癌旁组织中主要呈阴性表达,在肝癌组织中呈阳性表达。C1QTNF3蛋白在肝癌组织中的阳性表达率(76.67% vs 33.33%)和强阳性表达率(54.44% vs 5.56%)均显著高于癌旁组织(χ2值分别为34.141、51.217,P值均<0.01)。肿瘤直径≥5 cm、晚期、肝硬化、HBsAg阴性和GGT≥50 U/L肝癌患者的C1QTNF3蛋白强阳性表达率均显著高于肿瘤直径<5 cm、早期、无肝硬化、HBsAg阳性和GGT<50 U/L的肝癌患者(P值均<0.05)。单因素Cox回归分析结果显示,肿瘤直径、复发情况和C1QTNF3表达是肝癌患者预后的影响因素(P值均<0.05);多因素Cox回归分析结果显示,C1QTNF3表达水平和复发情况是影响肝癌患者生存期的独立危险因素(P值均<0.05)。生存曲线结果显示,所有肝癌患者中,C1QTNF3高表达(强阳性)者相较于低表达者,总生存率和无瘤生存率均更短(χ2值分别为17.010、13.647,P值均<0.001);在肿瘤直径≥5 cm、早/晚期、复发、肝硬化、HBsAg阳性、ALT<40 U/L、ALT≥40 U/L和GGT≥50 U/L的肝癌患者中,C1QTNF3高表达者的总生存率均显著降低(χ2值分别11.086、5.578、5.295、19.159、16.391、13.774、10.119、8.152、12.035,P值均<0.05)。ROC曲线结果显示,C1QTNF3表达在5年时的预测潜力最强,ROC曲线下面积为0.77。 结论 C1QTNF3在肝癌组织中呈高表达,其表达水平和复发情况与肝癌患者的生存期密切相关,C1QTNF3蛋白高表达患者生存率更低。

Abstract

Objective To investigate the expression of C1q tumor necrosis factor-related protein 3 (C1QTNF3) in liver cancer tissue, its association with the clinicopathological features of patients, and its potential value in predicting the prognosis of liver cancer. Methods Related data were collected from TIMER, UALCAN, TNMplot, and GEO databases, and the bioinformatics methods were used to measure the expression level of C1QTNF3 in pan-cancer, normal tissue/liver cancer tissue, and cancerous tissue/paracancerous tissue. Cancerous and paracancerous tissue samples were collected from 90 patients with liver cancer, and related clinical data were collected, including age, sex, tumor diameter, and tumor number. The independent-samples t test or the paired t-test was used for comparison of continuous data between groups, and the chi-square test was used for comparison of categorical data between groups. The Kaplan-Meier method was used to plot survival curves, and the Log-rank test was used to investigate the association between the expression level of C1QTNF3 and the survival of patients with liver cancer. The Cox regression model was used to identify the risk factors for the prognosis of patients with liver cancer, and the receiver operating characteristic (ROC) curve was used to analyze the ability of C1QTNF3 expression at different time points for predicting the prognosis of patients with liver cancer. Results The bioinformatics analysis showed that the expression of C1QTNF3 was upregulated in various malignant tumors, especially in liver cancer tissue (P<0.001), and the expression level of C1QTNF3 in liver cancer tissue was significantly higher than that in normal tissue and paracancerous tissues (all P<0.01). The immunohistochemical staining results of 90 patients with liver cancer showed that C1QTNF3 was mainly expressed in cytoplasm, with a small amount in nucleus, and it had negative expression in paracancerous tissue and positive expression in liver cancer tissue. The positive expression rate and strong positive expression rate of C1QTNF3 protein in liver cancer tissue were significantly higher than those in paracancerous tissue (positive expression rate: 76.67% vs 33.33%, χ2=34.141, P<0.01; strong positive expression rate: 54.44% vs 5.56%, χ2=51.217, P<0.01). The liver cancer patients with a tumor diameter of ≥5 cm, an advanced stage, the presence of liver cirrhosis, negative HBsAg, and gamma-glutamyl transpeptidase (GGT)≥50 U/L had a significantly higher strong positive expression rate of C1QTNF3 protein than those with a tumor diameter of <5 cm, an early stage, the absence of liver cirrhosis, positive HBsAg, and GGT<50 U/L (all P<0.05). The univariate Cox regression analysis showed that tumor diameter, recurrence, and C1QTNF3 expression were influencing factors for the prognosis of patients with liver cancer (all P<0.05), and the multivariate Cox regression analysis showed that the expression level of C1QTNF3 and recurrence were independent risk factors for the survival of patients with liver cancer (both P<0.05). The survival curve analysis showed that for all patients with liver cancer, the patients with high (strong positive) expression of C1QTNF3 had significantly lower overall survival rate and disease-free survival rate than those with low expression (χ2=17.010 and 13.647, both P<0.001); for liver cancer patients with a tumor diameter of ≥5 cm, an early/advanced stage, recurrence, the presence of liver cirrhosis, positive HBsAg, alanine aminotransferase (ALT) <40 U/L, ALT≥40 U/L, and GGT≥50 U/L, the patients with high expression of C1QTNF3 had a significant reduction in overall survival rate (χ2=11.086, 5.578, 5.295, 19.159, 16.391, 13.774, 10.119, 8.152, and 12.035, all P<0.05). The ROC curve analysis showed that C1QTNF3 expression had the strongest predictive potential at 5 years, with an area under the ROC curve of 0.77. Conclusion C1QTNF3 is highly expressed in liver cancer tissue, and the expression level of C1QTNF3 and recurrence are closely associated with the survival of patients with liver cancer. Patients with high expression of C1QTNF3 protein tend to have a lower survival rate.

Graphical abstract

关键词

肝肿瘤 / 脂肪因子类 / 预后

Key words

Liver Neoplasms / Adipokines / Prognosis

引用本文

引用格式 ▾
金丽莹,王姝涵,杨洋. C1q肿瘤坏死因子相关蛋白3(C1QTNF3)在肝癌中的表达及其对预后的预测价值[J]. 临床肝胆病杂志, 2025, 41(05): 934-941 DOI:10.12449/JCH250520

登录浏览全文

4963

注册一个新账户 忘记密码

肝癌是全球第六大最常见的恶性肿瘤,在中国,肝癌的年死亡人数约35万例,占全球肝癌相关死亡总数的50%以上,病死率仅次于肺癌1,是我国第四大常见恶性肿瘤和第二大肿瘤致死原因2-3。尽管近年来肝癌诊治取得显著进展,但由于其高转移性和复发性,患者5年生存率仍不足20%4。目前,临床常用的肝癌预后相关标志物包括TBil、PT、PTA以及评估肝损伤的金标准ALT和AST5-6,但上述标志物在临床应用中仍存在敏感性不足、特异性有限等诸多问题。因此,探究肝癌发生发展的潜在机制并寻找新的治疗靶点,依然是当前研究的热点。肝病进展为癌症的过程中常伴随慢性炎症,在此过程中,肝巨噬细胞通过调控炎症反应发挥重要作用7。巨噬细胞是组织中的一种防御性免疫细胞,也是固有免疫系统中的核心成员8。肝巨噬细胞通过极化为M1型(分泌促炎因子)和M2型(分泌抑炎因子),调控免疫微环境9。作为维持肝脏稳态的重要因素之一,巨噬细胞与多种肝脏疾病密切相关,如肝脏炎症、肝硬化及肝癌10。C1q肿瘤坏死因子相关蛋白3(C1q/tumor necrosis factor related proteins-3,C1QTNF3)是一种新型脂肪因子,具有调节代谢、炎症和心血管系统功能的作用11。研究发现,C1QTNF3能够刺激巨噬细胞趋化,抑制与糖酵解增加和M1型极化相关的M2型巨噬细胞呼吸。因此,C1QTNF3在肝癌发展及预后中的临床意义值得进一步探讨。本研究旨在评估C1QTNF3在肝癌中的表达水平及其临床意义,以期为肝癌的临床治疗提供潜在的治疗靶点和预后因子。

1 材料与方法

1.1 材料及主要试剂

90例肝癌患者的肝癌组织及其癌旁组织芯片购自上海芯超公司。C1QTNF3多克隆抗体购自武汉三鹰生物技术有限公司。

1.2 生物信息学分析C1QTNF3在泛癌组织、肝癌组织中的表达

利用TIMER数据库分析C1QTNF3基因在泛癌中的表达水平。利用UALCAN数据库分析比较C1QTNF3基因在正常组织(n=50)及肝癌组织(n=371)中的表达水平。通过TNMplot数据库中的不同数据集验证分析C1QTNF3基因的表达差异:首先比较肝癌组织(n=806)和癌旁组织(n=379)中的表达水平;其次比较143例肝癌患者配对样本(肝癌组织与对应癌旁组织)中的表达水平。利用GEO数据库分析C1QTNF3基因在20例肝癌组织及其癌旁组织中的表达水平。

1.3 免疫组化染色检测肝癌芯片组织中C1QTNF3基因的表达

芯片组织经过二甲苯、乙醇脱蜡水化,柠檬酸盐抗原修复,3% H2O2室温30 min去内源过氧化物酶活性后,滴加C1QTNF3一抗稀释液(1∶50),在4 ℃下处理过夜。次日,滴加辣根过氧化物酶标记二抗,室温下处理1 h,经过DAB显色,苏木素复染,封片,显微镜下观察、拍照。根据阳性细胞染色程度和阳性细胞百分比对样品进行分类。染色强度计分:未着色为0分,浅黄色为1分,棕黄色为2分,黄褐色为3分;阳性细胞百分比计分:阳性细胞数占0~5%为0分,6%~25%为1分,26%~50%为2分,51%~75%为3分,>75%为4分。将上述两项得分结果相乘:0~3分为阴性(-),4~6分为弱阳性(+),7~9分为阳性(++),10~12分为强阳性(+++)。其中“+++”为高表达。

1.4 统计学方法

使用SPSS 26.0和GraphPad Prism 8.0软件分析处理数据。计量资料组间比较采用成组t检验或配对t检验;计数资料组间比较采用χ2检验。Kaplan-Meier法绘制生存曲线,Log-rank检验分析C1QTNF3表达水平与肝癌患者生存期的关系。Cox回归模型分析影响肝癌患者预后的风险因素,受试者操作特征曲线(ROC曲线)分析不同时间点C1QTNF3表达对肝癌患者预后的预测能力。P<0.05为差异有统计学意义。

2 结果

2.1 C1QTNF3的生物信息学分析

TIMER数据库分析结果显示,C1QTNF3基因表达量在多种恶性肿瘤组织中上调,尤其在肝癌组织中明显上调(P<0.001)(图1a);UALCAN数据库分析结果显示,C1QTNF3基因表达量在肝癌组织中显著上调(P<0.01)(图1b);TNMplot数据库分析结果显示,C1QTNF3基因在肝癌组织中的表达量与癌旁组织相比均上调(P值均<0.01)(图1c、d);GEO数据库分析结果显示,肝癌组织C1QTNF3基因表达量高于其癌旁组织(P<0.01)(图1e)。

2.2 90例肝癌患者C1QTNF3表达情况

为进一步明确C1QTNF3蛋白在肝癌组织及其癌旁组织中的蛋白表达水平,对90例肝癌患者的石蜡切片组织进行免疫组化染色。结果显示,C1QTNF3主要表达于细胞质,少量表达于细胞核,且在癌旁组织中主要呈阴性表达,在肝癌组织中呈弱阳性、阳性、强阳性表达(图2)。C1QTNF3蛋白在肝癌组织中的阳性表达率和强阳性表达率均显著高于癌旁组织(P值均<0.01)(表1)。

2.3 90例肝癌患者不同临床病理特征间C1QTNF3强阳性率的比较

90例肝癌患者年龄29~84岁。肿瘤直径≥5 cm、晚期、肝硬化、HBsAg阴性和GGT≥50 U/L肝癌患者癌组织中C1QTNF3蛋白强阳性表达率均显著高于肿瘤直径<5 cm、早期、无肝硬化、HBsAg阳性和GGT<50 U/L的患者(P值均<0.05)(表2)。

2.4 单因素及多因素分析

单因素Cox回归分析结果显示,肿瘤直径、复发情况和C1QTNF3表达是肝癌患者预后的影响因素(P值均<0.05)(表3);多因素Cox回归分析结果显示,C1QTNF3表达水平和复发情况是影响肝癌患者生存期的独立危险因素(P值均<0.05)(表4)。

2.5 生存分析

生存曲线结果显示,所有肝癌患者中,C1QTNF3高表达(强阳性)者相较于低表达者,总生存率和无瘤生存率均更短(P值均<0.001);在肿瘤直径≥5 cm、早/晚期、复发、肝硬化、HBsAg阳性、ALT<40 U/L、ALT≥40 U/L和GGT≥50 U/L的肝癌患者中,C1QTNF3高表达者的总生存率均显著降低(P值均<0.05)(图3)。

2.6 C1QTNF3表达对肝癌预后的预测价值

ROC曲线结果显示,C1QTNF3表达在1年内的预测效能较低,ROC曲线下面积(AUC)为0.61。随着时间推移,预测潜力渐强,在5年时的预测潜力最强,AUC为0.77(图4)。

3 讨论

肝癌是一种发病率和病死率均较高的恶性肿瘤,因此早期诊断与治疗至关重要,其主要危险因素包括肝硬化、慢性HBV感染及HCV感染13。尽管血清AFP是经典的肝癌诊断标志物,但其敏感度仅为70%14,且本研究结果显示,AFP与肝癌患者预后无关。由于肝癌的发生发展涉及多因素、多阶段,不同个体和疾病阶段的表现形式差异较大,单一标志物难以实现精准诊断15。当前发现的血清标志物仍需联合使用以提高诊断准确性,因此研发更高敏感度和特异度的标志物是临床亟待解决的关键问题16

自1994年瘦素和脂联素被发现以来,对脂肪组织的研究认知发生了革命性转变。脂肪组织作为最大的内分泌器官,可分泌多种具有生物活性的脂肪因子。这些脂肪因子可通过多种途径影响肝脏的炎症反应、纤维化进程及细胞死亡过程17。其中,C1QTNF3是一种新型血清蛋白,仅由脂肪细胞特异性分泌18-19,其高表达与多种癌症密切相关20。C1QTNF3属于C1q/TNF超家族,已被研究证实参与调控代谢平衡、炎症反应、肿瘤转移及细胞凋亡等多个病理生理过程21-24,影响肝脏功能的机制包括诱导脂联素释放、刺激脂质过氧化及细胞增殖分化等25-28。C1QTNF3具有与脂联素相似的序列同源性,并在脂肪组织中高度表达29-30。研究发现,C1QTNF3对M1、M2型巨噬细胞表现出趋化活性,并可促使M2型巨噬细胞向M1样表型转化,从而抑制肿瘤进展31-33

C1QTNF3可作为预后标志物,且联合CEA、CA125等传统标志物可提高预后预测准确性,已在结直肠癌和卵巢癌中显现出较大潜力。本研究结果显示,C1QTNF3高表达与肝癌患者不良预后有关,其可能通过调控炎症与免疫逃逸、细胞增殖与凋亡失衡、上皮-间质转化与转移、代谢重编程、血管生成与缺氧适应、基因组不稳定与耐药性等潜在通路影响肿瘤进展。在C1QTNF3低表达肝癌中,外源性补充重组蛋白或基因治疗可能抑制进展。针对C1QTNF3高表达且具有促癌作用的肿瘤类型(如肺癌),开发靶向小分子抑制剂或单克隆抗体可能是潜在的治疗策略。鉴于C1QTNF3作用机制的复杂性,其在不同的信号通路中可能表现出双向调控作用,未来研究应着重探索C1QTNF3表达水平与免疫治疗响应性的相关性,为开发联合治疗方案提供理论依据。C1QTNF3的预后价值可能具有组织特异性,甚至在同一肿瘤类型的不同分子亚型中表现出相反的作用,提示相关研究需要结合肿瘤微环境特征进行更细致的分析。

免疫检查点抑制剂可延长恶性肿瘤患者的生存期,但仍有部分患者难以从中获益,部分原因是肿瘤微环境的代谢网络发生变化。肿瘤微环境中的免疫细胞,如肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)、T细胞等的代谢特征与变化、免疫细胞间代谢的相互影响均可导致抗肿瘤免疫向不同的方向发展。近年研究表明,C1q阳性TAM作为TAM的一种特殊亚群,不仅在恶性肿瘤的进展中发挥重要作用,且与免疫治疗抵抗有密切关系34

本研究在数据来源和样本规模方面存在一定局限性,临床验证样本量相对较小,未来需通过多中心、大样本研究验证,并结合细胞和动物实验进一步探索C1QTNF3在肝癌中的作用机制。

综上所述,C1QTNF3高表达肝癌患者的总生存率及无瘤生存率更低,提示C1QTNF3具有预测肝癌患者预后的潜在价值。

参考文献

[1]

CHEN WQ, ZHENG RS, BAADE PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338 .

[2]

HOU ZY, LIU Y, YANG CR, et al. Current research status and prospect of circulating tumor DNA in hepatocellular carcinoma[J]. J Clin Hepatol, 2022, 38(11): 2616-2620. DOI: 10.3969/j.issn.1001-5256.2022.11.036 .

[3]

侯志远, 刘源, 杨超然, 循环肿瘤DNA在肝细胞癌中的研究现状及展望[J]. 临床肝胆病杂志, 2022, 38(11): 2616-2620. DOI: 10.3969/j.issn.1001-5256.2022.11.036 .

[4]

RAN XK, CHEN XJ, ZHAO YX, et al. Expression and clinical significance of forkhead box A2 and forkhead box J2 in hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37(6): 1342-1347. DOI: 10.3969/j.issn.1001-5256.2021.06.025 .

[5]

冉小柯, 陈欣菊, 赵云霞, 叉头转录因子A2、J2在肝细胞癌组织中的表达及意义[J]. 临床肝胆病杂志, 2021, 37(6): 1342-1347. DOI: 10.3969/j.issn.1001-5256.2021.06.025 .

[6]

YU XH, CHEN BD, LIU YM, et al. Role of NOD-like receptor protein 3 inflammasome in the development and progression of hepatocellular carcinoma[J]. J Clin Hepatol, 2024, 40(2): 397-401. DOI: 10.12449/JCH240229 .

[7]

余学海, 陈本栋, 刘伊敏, NOD样受体蛋白3(NLRP3)炎性小体在肝细胞癌发生发展中的作用[J]. 临床肝胆病杂志, 2024, 40(2): 397-401. DOI: 10.12449/JCH240229 .

[8]

LI JJ, YANG HH, HUO G. Analysis of clinical features, cell morphology and prognostic factors in patients with primary liver cancer[J]. J Clin Exp Med, 2024, 23(6): 566-570. DOI: 10.3969/j.issn.1671-4695.2024.06.002 .

[9]

李姣姣, 杨会会, 霍刚. 原发性肝癌患者临床特征、细胞形态学分析及其预后的影响因素分析[J]. 临床和实验医学杂志, 2024, 23(6): 566-570. DOI: 10.3969/j.issn.1671-4695.2024.06.002 .

[10]

GUO P, LU W, YANG WX, et al. Research progress in biomarkers of drug-induced liver injury[J]. J Clin Hepatol, 2016, 32(9): 1822-1826. DOI: 10.3969/j.issn.1001-5256.2016.09.043 .

[11]

郭佩, 卢旺, 杨文轩, 药物性肝损伤相关生物学标志物的研究进展[J]. 临床肝胆病杂志, 2016, 32(9): 1822-1826. DOI: 10.3969/j.issn.1001-5256.2016.09.043 .

[12]

ALBA MM, EBRIGHT B, HUA B, et al. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development[J]. Front Physiol, 2023, 14: 1098467. DOI: 10.3389/fphys.2023.1098467 .

[13]

NATI M, CHUNG KJ, CHAVAKIS T. The role of innate immune cells in nonalcoholic fatty liver disease[J]. J Innate Immun, 2022, 14(1): 31-41. DOI: 10.1159/000518407 .

[14]

YAN RJ, JIAO JZ, HUANG Y, et al. Research advances in liver macrophages regulating malignant transformation of hepatic precancerous lesions[J]. J Clin Hepatol, 2024, 40(5): 1039-1043. DOI: 10.12449/JCH240527 .

[15]

闫瑞娟, 焦俊喆, 黄玉, 肝巨噬细胞调控肝癌癌前病变恶变的研究进展[J]. 临床肝胆病杂志, 2024, 40(5): 1039-1043. DOI: 10.12449/JCH240527 .

[16]

KHURANA A, NAVIK U, ALLAWADHI P, et al. Spotlight on liver macrophages for halting liver disease progression and injury[J]. Expert Opin Ther Targets, 2022, 26(8): 707-719. DOI: 10.1080/14728222.2022.2133699 .

[17]

MAO ZF, YANG LH, LU XS, et al. C1QTNF3 in the murine ovary and its function in folliculogenesis[J]. Reproduction, 2018, 155(4): 333-346. DOI: 10.1530/REP-17-0783 .

[18]

MICALLEF P, VUJIČIĆ M, WU Y, et al. C1QTNF3 is upregulated during subcutaneous adipose tissue remodeling and stimulates macrophage chemotaxis and M1-like polarization[J]. Front Immunol, 2022, 13: 914956. DOI: 10.3389/fimmu.2022.914956 .

[19]

ZHENG WP, SHEN ZY. Risk factors for tumor recurrence after liver transplantation for hepatocellular carcinoma and related control strategies[J]. J Clin Hepatol, 2019, 35(11): 2391-2395. DOI: 10.3969/j.issn.1001-5256.2019.11.003 .

[20]

郑卫萍, 沈中阳. 肝细胞癌肝移植术后肿瘤复发的危险因素与防治策略[J]. 临床肝胆病杂志, 2019, 35(11): 2391-2395. DOI: 10.3969/j.issn.1001-5256.2019.11.003 .

[21]

WANG TR, XU AG, CHEN L, et al. Values of united determining serum gangliosides and fetoprotein-A on primary hepatic carcinoma diagnosis[J]. J Clin Hepatol, 2006, 22(4): 254-255. DOI: 10.3969/j.issn.1001-5256.2006.04.005 .

[22]

王天然, 许爱国, 陈莉, 血清GLS和AFP联合测定对原发性肝癌诊断的意义[J]. 临床肝胆病杂志, 2006, 22(4): 254-255. DOI: 10.3969/j.issn.1001-5256.2006.04.005 .

[23]

YANG GM, ZHAO YS, WANG CH, et al. Research advances in tumor markers for the diagnosis of hepatocellular carcinoma[J]. J Clin Hepatol, 2018, 34(1): 199-203. DOI: 10.3969/j.issn.1001-5256.2018.01.044 .

[24]

杨贵敏, 赵运胜, 王春华, 肝细胞癌肿瘤标志物的研究进展[J]. 临床肝胆病杂志, 2018, 34(1): 199-203. DOI: 10.3969/j.issn.1001-5256.2018.01.044 .

[25]

ZHU MY, CHEN J, ZHANG XX. Research advances in serum biomarkers for early diagnosis of hepatocellular carcinoma[J]. J Clin Hepatol, 2014, 30(10): 1091-1093. DOI: 10.3969/j.issn.1001-5256.2014.10.029 .

[26]

朱明玉, 陈洁, 张欣欣. 肝细胞癌早期诊断血清学标志物的研究进展[J]. 临床肝胆病杂志, 2014, 30(10): 1091-1093. DOI: 10.3969/j.issn.1001-5256.2014.10.029 .

[27]

YIN JY, WANG Q. Progress on adipokines in non-alcoholic fatty liver disease[J/CD]. Chin J Liver Dis (Electronic Version), 2023, 15(1): 1-5. DOI: 10.3969/j.issn.1674-7380.2023.01.001 .

[28]

尹静亚, 王琦. 脂肪因子在非酒精性脂肪性肝病中研究进展[J/CD]. 中国肝脏病杂志(电子版), 2023, 15(1): 1-5. DOI: 10.3969/j.issn.1674-7380.2023.01.001 .

[29]

SCHERER PE, WILLIAMS S, FOGLIANO M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes[J]. J Biol Chem, 1995, 270(45): 26746-26749. DOI: 10.1074/jbc.270.45.26746 .

[30]

WEI SC, ZHENG GQ. Role of adipokine in the pathogenesis of cirrhosis of the liver[J]. J Clin Hepatol, 2012, 28(1): 78-81.

[31]

魏思忱, 郑国启. 脂肪因子在肝硬化发病机制中的作用[J]. 临床肝胆病杂志, 2012, 28(1): 78-81.

[32]

SHAPIRO L, SCHERER PE. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor[J]. Curr Biol, 1998, 8(6): 335-338. DOI: 10.1016/s0960-9822(98)70133-2 .

[33]

BYERLY MS, PETERSEN PS, RAMAMURTHY S, et al. C1q/TNF-related protein 4 (CTRP4) is a unique secreted protein with two tandem C1q domains that functions in the hypothalamus to modulate food intake and body weight[J]. J Biol Chem, 2014, 289(7): 4055-4069. DOI: 10.1074/jbc.M113.506956 .

[34]

BYERLY MS, SWANSON R, WEI ZK, et al. A central role for C1q/TNF-related protein 13 (CTRP13) in modulating food intake and body weight[J]. PLoS One, 2013, 8(4): e62862. DOI: 10.1371/journal.pone.0062862 .

[35]

KAMBARA T, OHASHI K, SHIBATA R, et al. CTRP9 protein protects against myocardial injury following ischemia-reperfusion through AMP-activated protein kinase (AMPK)-dependent mechanism[J]. J Biol Chem, 2012, 287(23): 18965-18973. DOI: 10.1074/jbc.M112.357939 .

[36]

KLONISCH T, GLOGOWSKA A, THANASUPAWAT T, et al. Structural commonality of C1q TNF-related proteins and their potential to activate relaxin/insulin-like family peptide receptor 1 signalling pathways in cancer cells[J]. Br J Pharmacol, 2017, 174(10): 1025-1033. DOI: 10.1111/bph.13559 .

[37]

ELSAID HH, ELGOHARY MN, ELSHABRAWY AM. Complement c1q tumor necrosis factor-related protein 3 a novel adipokine, protect against diabetes mellitus in young adult Egyptians[J]. Diabetes Metab Syndr, 2019, 13(1): 434-438. DOI: 10.1016/j.dsx.2018.10.004 .

[38]

CANDLER TP, MAHMOUD O, LYNN RM, et al. Continuing rise of type 2 diabetes incidence in children and young people in the UK[J]. Diabet Med, 2018, 35(6): 737-744. DOI: 10.1111/dme.13609 .

[39]

YARIBEYGI H, ATKIN SL, SAHEBKAR A. Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function[J]. J Cell Physiol, 2019, 234(6): 8402-8410. DOI: 10.1002/jcp.27754 .

[40]

YARIBEYGI H, RASHIDFARROKHI F, ATKIN SL, et al. C1q/TNF-related protein-3 and glucose homeostasis[J]. Diabetes Metab Syndr, 2019, 13(3): 1923-1927. DOI: 10.1016/j.dsx.2019.04.047 .

[41]

WILLIAM WONG G, KRAWCZYK SA, KITIDIS-MITROKOSTAS C, et al. Molecular, biochemical and functional characterizations of C1q/TNF family members: Adipose-tissue-selective expression patterns, regulation by PPAR-gamma agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions[J]. Biochem J, 2008, 416(2): 161-177. DOI: 10.1042/BJ20081240 .

[42]

MAEDA T, ABE M, KURISU K, et al. Molecular cloning and characterization of a novel gene, CORS26 encoding a putative secretory protein and its possible involvement in skeletal development[J]. J Biol Chem, 2001, 276(5): 3628-3634. DOI: 10.1074/jbc.M007898200 .

[43]

CHEN Q, LAI SM, XU SH, et al. Resident macrophages restrain pathological adipose tissue remodeling and protect vascular integrity in obese mice[J]. EMBO Rep, 2021, 22(8): e52835. DOI: 10.15252/embr.202152835 .

[44]

DIRAT B, BOCHET L, DABEK M, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion[J]. Cancer Res, 2011, 71(7): 2455-2465. DOI: 10.1158/0008-5472.CAN-10-3323 .

[45]

NEVOLA R, RUOCCO R, CRISCUOLO L, et al. Predictors of early and late hepatocellular carcinoma recurrence[J]. World J Gastroenterol, 2023, 29(8): 1243-1260. DOI: 10.3748/wjg.v29.i8.1243 .

[46]

YANG ZW, SONG YX, CAO CY, et al. Research progress on effects of C1q-positive tumor-associated macrophages on T cell metabolism and function[J]. China Ind Econ, 2024, 30(11): 907-916. DOI: 10.11735/j.issn.1671-170X.2024.11.B004 .

[47]

杨子薇, 宋羽霄, 曹春雨, C1q阳性肿瘤相关巨噬细胞影响T细胞代谢及功能的研究进展[J]. 肿瘤学杂志, 2024, 30(11): 907-916. DOI: 10.11735/j.issn.1671-170X.2024.11.B004 .

基金资助

AI Summary AI Mindmap
PDF (4031KB)

313

访问

0

被引

详细

导航
相关文章

AI思维导图

/