抑制脯氨酰内肽酶表达对非酒精性脂肪性肝炎小鼠模型的影响及作用机制

熊静平 ,  张跃新

临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1097 -1104.

PDF (4556KB)
临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1097 -1104. DOI: 10.12449/JCH250615
脂肪性肝病

抑制脯氨酰内肽酶表达对非酒精性脂肪性肝炎小鼠模型的影响及作用机制

作者信息 +

Effect of prolyl endopeptidase expression inhibition on a mouse model of non-alcoholic steatohepatitis and its mechanism

Author information +
文章历史 +
PDF (4664K)

摘要

目的 探究脯氨酰内肽酶(PREP)对高脂饮食诱导的非酒精性脂肪性肝炎(NASH)小鼠模型的影响及可能的机制。 方法 将18只健康6~8周龄雄性C57BL/6J小鼠随机分为正常对照组、NASH组和NASH+迷迭香酸(RA)组,每组6只。正常对照组饲予普通饲料16周,NASH组及NASH+RA组饲予高脂饮食16周,第9周NASH+RA组予加PREP抑制剂RA灌胃,100 mg/kg,1次/d,干预8周。造模和干预结束后处死小鼠,检测不同组别小鼠的血清炎症指标、肝脏甘油三酯(TG)浓度,观察肝脏脂质、炎症、肝纤维化的改变,并计算NAFLD活动度(NAS)积分,应用Western Blot、荧光定量PCR法分别检测各组小鼠肝组织PREP、过氧化物酶体增殖物激活受体-γ(PPAR-γ)、成纤维细胞生长因子21(FGF21)、沉默信息调节因子1(SIRT1)蛋白和mRNA水平。正态分布的计量资料多组间比较采用单因素方差分析,进一步两两比较采用LSD-t和Dunnett’s-T3检验。不满足正态分布的计量资料多组间比较及进一步两两比较采用Kruskal-Wallis H检验。 结果 NASH+RA组小鼠血清IL-6、TNF-α、TG水平均较NASH组显著降低(P值均<0.05),NASH+RA组肝脂肪变性、肝细胞水肿较NASH组明显减轻,炎细胞浸润较NASH组减少,肝组织病变明显好转。NASH+RA组NAS积分与NASH组相比显著降低(P<0.05);NASH组血管周围胶原纤维增多,偶见纤维桥连,NASH+RA组的肝脏纤维化与NASH组比较,血管周围胶原纤维稍减少。NASH组肝脏胶原面积百分比较正常对照组明显升高(P<0.05),而NASH+RA组胶原面积百分比较NASH组无明显下降(P>0.05)。NASH+RA组较NASH组PPAR-γ、FGF21、SIRT1蛋白相对表达量显著升高(P值均<0.05),而PREP蛋白相对表达量较NASH组明显降低(P<0.05)。NASH+RA组较NASH组PPAR-γ mRNA、FGF21 mRNA、SIRT1 mRNA相对表达量明显升高(P值均<0.05),PREP mRNA相对表达量较NASH组显著下降(P<0.05)。 结论 PREP通过调控PPAR-γ-FGF21-SIRT1信号通路降低炎症水平,改善小鼠NASH。

Abstract

Objective To investigate the effect and possible mechanism of prolyl endopeptidase (PREP) on a mouse model of non-alcoholic steatohepatitis (NASH) induced by high-fat diet. Methods A total of 18 healthy male C57BL/6J mice, aged 6‍ ‍—‍ ‍8 weeks, were randomly divided into normal control group, NASH group, and NASH+rosmarinic acid (RA) group, with 6 mice in each group. The mice in the control group were fed with normal diet for 16 weeks, and those in the NASH group and the NASH+RA group were fed with high-fat diet for 16 weeks; the mice in the NASH+RA group were given the PREP inhibitor RA by gavage since week 9 at a dose of 100 mg/kg, once a day for 8 weeks. The mice were sacrificed after modeling and intervention, and each group of mice was observed in terms of serum inflammatory indicators, the concentration of triglyceride in the liver, and the changes in liver lipids/inflammation/liver fibrosis; NAFLD activity score (NAS) was calculated. Western blot and quantitative real-time PCR were used to measure the protein and mRNA expression levels of PREP, peroxisome proliferator-activated receptor-γ (PPAR-γ), fibroblast growth factor 21 (FGF21), and silent information regulator 1 (SIRT1) in liver tissue. A one-way analysis of variance was used for comparison of normally distributed continuous data between multiple groups, while the least significant difference t-test and the Dunnett’s-T3 test were used for further comparison between two groups. The Kruskal-Wallis H test was used for comparison of non-normally distributed continuous data between multiple groups and further comparison between two groups. Results Compared with the NASH group, the NASH+RA group had significant reductions in the serum levels of interleukin-6, tumor necrosis factor-α, and triglyceride (all P<0.05), as well as significant improvements in hepatic steatosis, hepatocyte edema, inflammatory cell infiltration, and liver tissue lesion. The NASH+RA group had a significant reduction in NAS compared with the NASH group (P<0.05), and the NASH group had an increase in perivascular collagen fiber with occasional fiber bridging, while the NASH+RA group had a slight reduction in perivascular collagen fiber compared with the NASH group. Compared with the normal control group, the NASH group had a significant increase in collagen area percentage in the liver (P<0.05), while the NASH+RA group had no significant reduction in collagen area percentage compared with the NASH group. Compared with the NASH group, the NASH+RA group had significant increases in the relative protein expression levels of PPAR-γ, FGF21, and SIRT1 (all P<0.05) and a significant reduction in the relative protein expression level of PREP (P<0.05). Compared with the NASH group, the NASH+RA group had significant increases in the relative mRNA expression levels of PPAR-γ, FGF21, and SIRT1 (P<0.05) and a significant reduction in the relative mRNA expression level of PREP (P<0.05). Conclusion PREP reduces the level of inflammation and improves NASH in mice by regulating the PPAR-γ/FGF21/SIRT1 signaling pathway.

Graphical abstract

关键词

非酒精性脂肪性肝病 / 脯氨酰寡肽酶类 / 小鼠, 近交C57BL

Key words

Non-alcoholic Fatty Liver Disease / Prolyl Oligopeptidases / Mice, Inbred C57BL

引用本文

引用格式 ▾
熊静平,张跃新. 抑制脯氨酰内肽酶表达对非酒精性脂肪性肝炎小鼠模型的影响及作用机制[J]. 临床肝胆病杂志, 2025, 41(06): 1097-1104 DOI:10.12449/JCH250615

登录浏览全文

4963

注册一个新账户 忘记密码

非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)为肝脏脂质沉积过多的一系列疾病,包括非酒精性脂肪肝和非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH),常伴肥胖、代谢综合征、糖尿病、心血管疾病、肝外恶性肿瘤等1-4。NAFLD是全球最常见的肝病之一,患病率约为30%,且逐年增加,其负担在世界各地区迅速增长5。NAFLD的亚型NASH是导致肝纤维化、肝硬化、肝细胞癌的主要原因6-7。治疗NAFLD药物已逐渐用于临床8,但选择非常有限,有待进一步明确NASH的发病机制,开发更多的新药。脯氨酰内肽酶(prolylendopeptidase,PREP)为丝氨酸蛋白酶,可水解多种细胞因子、神经活性肽及小肽类激素9,有研究报道NAFLD小鼠肝组织PREP基因表达升高,抑制或敲除PREP基因可显著改善NAFLD小鼠的肝脂肪变性和炎症反应10-11。体外实验发现PREP抑制后过氧化物酶体增殖物激活受体-γ(peroxisome proliferator activated receptor-γ,PPAR-γ)mRNA表达显著降低,脂肪变性L02细胞内脂质积累显著减少12。PPAR-γ可调控成纤维细胞生长因子21(fibroblast growth factor 2,FGF21)表达13,FGF21可缓解NAFLD的炎症,抑制肝纤维化13-14。FGF21通过转录沉默信息调节因子1(sirtuin 1,SIRT1)通路抑制炎症因子TNF-α和IL-6产生,改善高脂诱导的炎症反应15。本研究通过高脂饮食建立NASH小鼠模型,用PREP抑制剂迷迭香酸(rosmarinic acid,RA)对其进行干预,探索抑制PREP表达后,如何调节PPAR-γ-FGF21-SIRT1通路,改善小鼠NASH的可能机制。

1 材料与方法

1.1 实验动物

SPF级C57BL/6雄性健康小鼠18只,6~8周龄,体质量18~22 g,实验动物生产许可证编号:SCXK(浙)2019-0002,实验动物使用许可证编号:SYXK(浙)2021-0051。饲养于杭州医学院实验动物中心SPF级动物实验室,实验室温度(22±2)℃,相对湿度60%~80%,小鼠自由摄取水分和食物,昼夜节律。

1.2 动物分组与处理

采用随机数字表法将小鼠分为3组:正常对照组(6只)、NASH组(6只)及NASH+RA组(6只)。正常对照组小鼠予16周的标准饮食喂养。NASH组小鼠予16周的高脂饲料(含有60%的脂肪供能,并额外添加了1%的胆固醇)(江苏省协同医药生物工程有限责任公司提供)喂养。NASH+RA组小鼠予高脂饲料喂养8周,第9周开始高脂饲料喂养并加RA灌胃,100 mg/kg,1次/d,持续8周。

1.3 小鼠血清炎症因子水平检测

在造模完成后,隔夜禁食,于次日上午,摘眼球收集全血,分离血清。使用IL-6和TNF-α试剂盒以ELISA法测定每组血清样本中IL-6和TNF-α的含量。

1.4 小鼠肝组织中TG浓度检测

收集各实验组小鼠肝组织,准确称取组织质量,按质量(g)∶体积(mL)=1∶9的比例,加入9倍体积的匀浆介质,冰水浴条件下机械匀浆,2 500 r/min,离心10 min,取上清液待测。使用生化试剂盒,按照试剂盒说明书检测各组肝组织中TG浓度。

1.5 HE染色观察肝组织病理形态

收集各组小鼠肝组织,用生理盐水冲洗干净血水后固定于10%中性福尔马林中。包埋,切片,HE染色,光镜下观察肝组织病理学改变。并依据是否有不同的病理表现和严重程度,采用NAFLD活动度积分评分法(NAS)进行评分。该评分系统包含三个组织学指标:肝细胞脂肪变性(0~3分)、小叶内炎症(0~3分)和肝细胞气球样变(0~2分)。当NAS总分≥5分时,即可诊断为NASH。

1.6 油红O染色观察肝组织脂质沉积

用OCT包埋小鼠肝组织样本,冰冻切片(厚度8 μm),室温回温,蒸馏水浸洗。加入60%异丙醇浸洗30 s。在密闭条件下加入新配制好的油红O工作液浸染10 min。加入60%异丙醇,使其分解至间质清晰,接着使用蒸馏水对其进行清洗。用苏木素染色2 min,然后用蒸馏水清洗,最后用甘油明胶密封,并使用显微镜进行观察和拍摄。

1.7 Masson染色观察肝组织纤维化

收集各组小鼠肝组织,包埋,切片,烤片,脱蜡,水化,漂洗,Masson染色,封片,在光学显微镜下对组织切片进行观察,评估胶原纤维比例。

1.8 肝组织PREP、PPAR-γ、FGF21和SIRT1蛋白表达检测

用RIPA裂解液提取肝脏样本中的蛋白质,BCA蛋白检测试剂盒测定蛋白质浓度。蛋白裂解物用SDS-PAGE胶电泳分离,转移到PVDF膜上。5%的脱脂奶粉(含有5%的溶剂)对转移膜进行1 h的封闭处理,之后使用TBST进行3次清洗,每次持续5 min。加入鼠抗β-actin 1∶510 000(购自北京义翘神州科技股份有限公司)、兔抗小鼠FGF21抗体1∶500(购自武汉博士德生物工程有限公司),兔抗小鼠PREP 1∶400、兔抗小鼠PPAR-γ 1∶800、兔抗小鼠SIRT11∶500的一抗(均购自北京博奥森生物技术有限公司),将其放置在4 ℃的环境中孵化一晚,然后使用1×TBST进行清洗,每次持续5 min,总共漂洗3次。加入HRP标记的二抗,于室温下孵育1 h后将2 mL显色液加至膜上,使用化学发光仪(Chemiscope3000,上海勤翔科学仪器有限公司)检测、拍照。

1.9 肝组织PREP、PPAR-γ、FGF21和SIRT1 mRNA测定

将组织在液氮包围的情况下,研磨成粉,取50 mg肝组织,应用TRLZOL法提取肝组织总RNA,采用qRT-PCR将mRNA逆转录合成cDNA。经荧光定量PCR扩增,基因相对水平以RQ值(2-△△CT)表示,以GAPDH为内参,计算PREP、PPAR-γ、FGF21、SIRT1基因相对水平。引物由上海生工公司设计合成,PCR扩增引物序列见表1

1.10 统计学方法

使用SPSS 19.0统计软件对数据进行统计分析。应用GraphPad Prism 5.0进行图像绘制。正态分布的计量资料采用x¯±s表示,多组间比较采用单因素方差分析,进一步两两比较采用LSD-t(方差齐时)和Dunnett’s-T3(方差不齐时)检验。不满足正态分布的计量资料采用MP25P75)描述,多组间比较及进一步两两比较采用Kruskal-Wallis H检验。P<0.05为差异有统计学意义。

2 结果

2.1 三组小鼠血清炎症因子水平比较

NASH组小鼠的血清IL-6、TNF-ɑ水平均显著高于正常对照组(P值均<0.05);NASH+RA组小鼠血清IL-6、TNF-ɑ水平较NASH组显著下降(P值均<0.05)(表2)。

2.2 三组小鼠肝组织中TG水平比较

NASH组小鼠肝组织TG水平(2.045±0.395) mmol/L较正常对照组(0.798±0.049) mmol/L显著升高(P<0.05),NASH+RA组小鼠TG水平(1.003±0.088) mmol/L较NASH组显著降低(P<0.05)。

2.3 三组小鼠肝脏病理形态改变及NAS积分比较

镜下大体观察,正常对照组肝组织结构清晰,肝细胞形态良好,个别肝细胞轻度水肿;NASH组肝组织结构紊乱,肝细胞出现大量脂肪空泡,部分区域脂肪变性严重,小叶内较多炎细胞灶状浸润,部分汇管区纤维组织增生;与NASH组比较,NASH+RA组肝组织脂肪变性明显减轻,肝细胞水肿、炎细胞浸润减少,肝组织病变明显好转(图1)。NASH组NAS积分显著升高,经RA干预后,脂肪变性得到改善,NAS积分显著下降(P<0.05)(表3)。

2.4 三组小鼠肝组织油红O染色结果比较

镜下大体观察,正常对照组肝组织内脂滴的含量及分布面积均较小;与正常对照组比较,NASH组肝组织内脂滴含量显著升高,分布面积显著增大;NASH+RA组与NASH组比较,肝组织内脂滴含量及分布面积均显著降低(图2)。

2.5 三组小鼠肝组织纤维化比较

镜下大体观察,小鼠肝组织中胶原纤维染色为蓝色,肝细胞染色为红色。正常对照组小鼠肝组织中胶原纤维较少,仅在血管周围少量沉积;与正常对照组比较,NASH组小鼠肝脏部分细胞脂肪变性,血管周围胶原纤维增多,偶见纤维桥连;与NASH组比较,NASH+RA组脂肪变性程度、范围减轻,血管周围胶原纤维稍减少(图3)。NASH组肝脏胶原面积百分比(19.89%±2.47%)较正常对照组(12.02%±1.79%)有显著升高(P<0.05),NASH+RA组肝脏胶原面积百分比(17.32%±3.59%)较NASH组无显著降低(P>0.05)。

2.6 三组小鼠肝组织各蛋白的表达水平

在NASH组中,PREP、PPAR-γ和FGF21蛋白表达较正常对照组显著升高(P值均<0.05),SIRT1蛋白表达较正常对照组显著下降(P<0.05);而在NASH+RA组中,PREP的蛋白表达较NASH组显著下降(P<0.05),SIRT1、PPAR-γ和FGF21的蛋白表达较NASH组明显升高(P值均<0.05)(表4图4)。

2.7 三组小鼠肝组织中PREP、PPAR-γ、SIRT1和FGF21 mRNA测定结果

在NASH组中,PREP、PPAR-γ和FGF21 mRNA表达水平较正常对照组显著升高(P值均<0.05),而SIRT1 mRNA表达水平较正常对照组显著下降(P<0.05)。在NASH+RA组中,PREP mRNA表达水平较NASH组显著下降(P<0.05),PPAR-γ、FGF21、SIRT1 mRNA表达水平明显高于NASH组(P值均<0.05)(表5)。

3 讨论

在遗传易感基础上,由脂质代谢异常、脂毒性、细胞因子及脂肪因子改变、氧化应激、内质网应激、线粒体功能障碍及肠道生态失调等因素共同作用导致NAFLD的“多重打击理论”逐渐被接受16-19。但NAFLD特别是NASH的具体发病机制仍有待于进一步研究。

PREP为700个氨基酸残基组成的蛋白,小鼠肝细胞脂肪变时PREP mRNA表达升高,使用丙戊酸钠抑制PREP mRNA表达后,NAFLD小鼠肝脏的炎症及脂肪变性得到了明显改善13。本研究中,NASH小鼠肝组织中PREP mRNA及蛋白表达水平升高,RA干预NASH小鼠后PREP mRNA及蛋白表达降低,表明PREP可能参与NASH的发生发展。Zhou等12的体外研究显示,PREP可影响与脂质代谢密切相关的PPAR-γ的表达。PPAR-γ具有双向调节脂质代谢的作用,可调控脂肪酸合酶、硬脂酰辅酶A去饱和酶等脂肪合成基因的表达,促进脂肪合成,同时可调控细胞脂肪型酸结合蛋白、脂肪酸转移蛋白等脂肪转运基因的表达,促进脂肪酸的吸收和转运20。本研究中,NASH小鼠肝组织中PPAR-γ mRNA及蛋白表达水平升高,RA干预后进一步升高,说明可能PPAR-γ表达水平升高促进脂肪合成导致NASH,在RA干预下PPAR-γ表达水平进一步升高,促进脂肪转运改善NASH。FGF21能介导PPAR-γ的生理作用15。Raptis等21研究结果显示FGF-21在NAFLD早期上调,抑制脂质在肝脏积聚并抑制炎症反应。如NAFLD持续存在,FGF-21的保护作用出现抵抗或耐受,活性下降。本研究中,NASH小鼠肝组织FGF21蛋白及mRNA表达水平显著升高,RA干预后进一步升高。NASH组小鼠FGF21蛋白及mRNA表达水平持续升高,可能是NAFLD持续存在不逆转,FGF-21保护作用出现抵抗或耐受导致。RA干预后,小鼠肝组织FGF21蛋白及mRNA表达仍持续上调,可能经RA干预,上述抵抗或耐受状态消失,FGF-21的活性恢复,从而改善NASH。同时,FGF21可增加SIRT1以及过氧化物酶体增殖物激活受体-γ辅激活因子-1α(PGC-1α)的基因表达,改善线粒体功能和高脂诱导的人肝细胞脂肪堆积,减少细胞氧化应激反应和炎症因子释放15。有研究结果显示,SIRT1表达升高可抑制炎症反应,改善NAFLD进展22。持续的慢性炎症在NASH进展过程中处于核心地位23-24。IL-6和TNF-α在NASH进展过程中起促炎作用。本研究中,NASH小鼠较正常对照组小鼠肝组织中SIRT1蛋白及mRNA表达水平降低,血清中炎症因子IL-6、TNF-α水平升高。肝脏NAS积分明显升高,肝脏明显脂肪变、小叶内炎症变化明显,肝组织内脂滴含量显著升高,分布面积显著增大;血管周围纤维组织增多,偶见纤维桥连。而RA干预NASH小鼠后,SIRT1蛋白及mRNA表达水平明显升高,血清IL-6和TNF-α水平,以及NAS积分都有了显著的下降。同时,肝脏的脂肪变性明显缓解,脂肪细胞的数量和覆盖范围明显减少。肝组织内脂滴含量及分布面积均显著降低。而小叶内的炎症缓解不明显,血管及周围纤维组织稍减少。说明FGF21可增加SIRT1表达,抑制IL-6、TNF-α的促炎作用,改善NASH,但对改善小鼠肝纤维化作用不明显。

综上所述,RA通过抑制PREP蛋白及mRNA,影响PPAR-γ、FGF21、SIRT1蛋白及mRNA表达,下调炎症因子,抑制NASH小鼠肝细胞炎症反应、缓解NASH肝脏的脂肪变性,显著下调NAS积分;而对NASH小鼠肝纤维化改善并不明显。由此可见,抑制PREP表达,可调控PPAR-γ-FGF21-SIRT1通路,改善小鼠脂肪性肝炎。

参考文献

[1]

RONG L, ZOU JY, RAN W, et al. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD)[J]. Front Endocrinol (Lausanne), 2023, 13: 1087260. DOI: 10.3389/fendo.2022.1087260 .

[2]

ALMOMANI A, KUMAR P, ONWUZO S, et al. Epidemiology and prevalence of lean nonalcoholic fatty liver disease and associated cirrhosis, hepatocellular carcinoma, and cardiovascular outcomes in the United States: A population-based study and review of literature[J]. J Gastroenterol Hepatol, 2023, 38(2): 269-273. DOI: 10.1111/jgh.16049 .

[3]

TANG HY, LV FR, ZHANG P, et al. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease[J]. Front Endocrinol (Lausanne), 2023, 14: 1254459. DOI: 10.3389/fendo.2023.1254459 .

[4]

IBRAHIM MK, SIMON TG, RINELLA ME. Extrahepatic outcomes of nonalcoholic fatty liver disease: Nonhepatocellular cancers[J]. Clin Liver Dis, 2023, 27(2): 251-273. DOI: 10.1016/j.cld.2023.01.004 .

[5]

PAIK JM, HENRY L, YOUNOSSI Y, et al. The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019[J]. Hepatol Commun, 2023, 7(10): e0251. DOI: 10.1097/HC9.0000000000000251 .

[6]

YOUNOSSI ZM, GOLABI P, PAIK JM, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review[J]. Hepatology, 2023, 77(4): 1335-1347. DOI: 10.1097/HEP.0000000000000004 .

[7]

LU R, LIU Y, HONG TP. Epidemiological characteristics and management of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in China: A narrative review[J]. Diabetes Obes Metab, 2023, 25(): 13-26. DOI: 10.1111/dom.15014 .

[8]

NI WJ, GENG N, BAI X, et al. An excerpt of EASL-EASD-EASO clinical practice guidelines on the management of metabolic dysfunctionassociated steatotic liver disease in 2024[J]. J Clin Hepatol, 2024, 40(8): 1567-1574. DOI: 10.12449/JCH240810 .

[9]

倪文婧, 耿楠, 白雪, 《2024年欧洲肝病学会/欧洲糖尿病学会/欧洲肥胖症学会临床实践指南: 代谢相关脂肪性肝病的管理》摘译[J]. 临床肝胆病杂志, 2024, 40(8): 1567-1574. DOI: 10.12449/JCH240810 .

[10]

BABKOVA K, KORABECNY J, SOUKUP O, et al. Prolyl oligopeptidase and its role in the organism: Attention to the most promising and clinically relevant inhibitors[J]. Future Med Chem, 2017, 9(10): 1015-1038. DOI: 10.4155/fmc-2017-0030 .

[11]

LI MT, JIANG DX, ZHANG JB, et al. Effects of sodium valproate on the progression of non-alcoholic fatty liver disease by inhibiting prolyl endopeptidase activity[J]. J Wenzhou Med Univ, 2022, 52(8): 657-662. DOI: 10.3969/j.issn.2095-9400.2022.08.009 .

[12]

李梦婷, 蒋黛西, 张建斌, 丙戊酸钠抑制脯氨酰内肽酶活性对非酒精性脂肪性肝病进展的影响[J]. 温州医科大学学报, 2022, 52(8): 657-662. DOI: 10.3969/j.issn.2095-9400.2022.08.009 .

[13]

JIANG DX, ZHANG JB, LI MT, et al. Prolyl endopeptidase gene disruption attenuates high fat diet-induced nonalcoholic fatty liver disease in mice by improving hepatic steatosis and inflammation[J]. Ann Transl Med, 2020, 8(5): 218. DOI: 10.21037/atm.2020.01.14 .

[14]

ZHOU D, LI BH, WANG J, et al. Prolyl oligopeptidase inhibition attenuates steatosis in the L02 human liver cell line[J]. PLoS One, 2016, 11(10): e0165224. DOI: 10.1371/journal.pone.0165224 .

[15]

SAMUEL VT, SHULMAN GI. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases[J]. Cell Metab, 2018, 27(1): 22-41. DOI: 10.1016/j.cmet.2017.08.002 .

[16]

WANG ZY, SUN TT, YU JJ, et al. FGF21: A sharp weapon in the process of exercise to improve NAFLD[J]. Front Biosci(Landmark Ed), 2023, 28(12): 351. DOI: 10.31083/j.fbl2812351 .

[17]

BARROSO LN, SALARINI J, LEITE NC, et al. Effect of fish oil supplementation on the concentration of miRNA-122, FGF-21 and liver fibrosis in patients with NAFLD: Study protocol for a randomized, double-blind and placebo-controlled clinical trial[J]. Clin Nutr ESPEN, 2023, 57: 117-125. DOI: 10.1016/j.clnesp.2023.06.027 .

[18]

NAN Y, XIANGLI W, ZHANG W, et al. FGF21 inhibits lipid accumulation and inflammation induced by palmitate in human hepatocytes via SIRT1 pathway[J]. Chin J Cell Mol Immunol, 2019, 35(7): 606-612. DOI: 10.13423/j.cnki.cjcmi.008839 .

[19]

南瑛, 相里伟, 张薇, 成纤维细胞生长因子21(FGF21)通过SIRT1通路抑制棕榈酸酯诱导的人肝细胞脂肪堆积和炎症反应[J]. 细胞与分子免疫学杂志, 2019, 35(7): 606-612. DOI: 10.13423/j.cnki.cjcmi.008839 .

[20]

WU YS. Exosomes derived from lipotoxic hepatocytes in inducing LSEC capillarization and promoting the progression of non-alcoholic fatty liver disease[D]. Zhenjiang: Jiangsu University, 2022.

[21]

武艳霜. 脂毒性损伤肝细胞分泌外泌体诱导LSEC毛细血管化促进NAFLD进展[D]. 镇江: 江苏大学, 2022.

[22]

LI YQ, TANG WJ, ZHOU YJ. Role of intestinal microbiota and metabolites in the development, progression, and treatment of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2023, 39(8): 1805-1810. DOI: 10.3969/j.issn.1001-5256.2023.08.006 .

[23]

李永强, 唐文娟, 周永健. 肠道菌群及其代谢产物在非酒精性脂肪性肝病发生发展及治疗中的作用[J]. 临床肝胆病杂志, 2023, 39(8): 1805-1810. DOI: 10.3969/j.issn.1001-5256.2023.08.006 .

[24]

YIN JY, WANG Q. Progress on adipokines in non-alcoholic fatty liver disease[J/CD]. Chin J Liver Dis (Electronic Version), 2023, 15(1): 1-5. DOI: 10.3969/j.issn.1674-7380.2023.01.001 .

[25]

尹静亚, 王琦. 脂肪因子在非酒精性脂肪性肝病中研究进展[J/CD]. 中国肝脏病杂志(电子版), 2023, 15(1): 1-5. DOI: 10.3969/j.issn.1674-7380.2023.01.001 .

[26]

HÖFLING C, KULESSKAYA N, JAAKO K, et al. Deficiency of prolyl oligopeptidase in mice disturbs synaptic plasticity and reduces anxiety-like behaviour, body weight, and brain volume[J]. Eur Neuropsychopharmacol, 2016, 26(6): 1048-1061. DOI: 10.1016/j.euroneuro.2016.02.015 .

[27]

RAPTIS DD, MANTZOROS CS, POLYZOS SA. Fibroblast growth factor-21 as a potential therapeutic target of nonalcoholic fatty liver disease[J]. Ther Clin Risk Manag, 2023, 19: 77-96. DOI: 10.2147/TCRM.S352008 .

[28]

YANG XN, JIN ZQ, LIN DF, et al. FGF21 alleviates acute liver injury by inducing the SIRT1-autophagy signalling pathway[J]. J Cell Mol Med, 2022, 26(3): 868-879. DOI: 10.1111/jcmm.17144 .

[29]

HAN JX, LI SW, WANG WZ, et al. SIRT1 activator E1231 alleviates nonalcoholic fatty liver disease by regulating lipid metabolism[J]. Curr Issues Mol Biol, 2023, 45(6): 5052-5070. DOI: 10.3390/cimb45060321 .

[30]

CHEN H, TAN HB, WAN J, et al. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets[J]. Pharmacol Ther, 2023, 245: 108391. DOI: 10.1016/j.pharmthera.2023.108391 .

基金资助

AI Summary AI Mindmap
PDF (4556KB)

538

访问

0

被引

详细

导航
相关文章

AI思维导图

/