高代谢风险慢性乙型肝炎患者发生肝硬化的影响因素分析及预测模型构建

邹玉萍 ,  姚莉 ,  邹军 ,  李立威 ,  蔡福庆 ,  黄杰安

临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1105 -1112.

PDF (2712KB)
临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1105 -1112. DOI: 10.12449/JCH250616
肝纤维化及肝硬化

高代谢风险慢性乙型肝炎患者发生肝硬化的影响因素分析及预测模型构建

作者信息 +

Risk factors for liver cirrhosis in chronic hepatitis B patients with high metabolic risks and establishment of a predictive model

Author information +
文章历史 +
PDF (2776K)

摘要

目的 探讨高代谢风险慢性乙型肝炎(CHB)患者发生肝硬化的主要危险因素,并构建无创预测模型,评估其与FIB-4、APRI、GPR及Forns指数模型的诊断效能差异。 方法 选取2017年9月1日—2022年10月31日于广西医科大学第二附属医院诊治的527例高代谢风险CHB患者,并按照7∶3比例随机分为建模组(n=368)和验证组(n=159)。在建模组中通过LASSO回归、多因素Logistic回归分析筛选出独立影响因素,并建立列线图模型,采用受试者操作特征曲线(ROC曲线)、校准曲线和决策曲线在建模组和验证组中对列线图预测模型进行验证以判断其区分度、校准度和临床实用性。通过Delong检验比较列线图预测模型与其他模型ROC曲线下面积(AUC)的差异。 结果 多因素Logistic回归分析显示,前白蛋白(OR=0.993,95%CI:0.988~0.999,P=0.019)、凝血酶时间(OR=1.182,95%CI:1.006~1.385,P=0.047)、log10TBil(OR=1.710,95%CI:1.239~2.419,P=0.001)、log10AFP(OR=1.327,95%CI:1.052~1.683,P=0.018)是高代谢风险CHB患者发生肝硬化的独立影响因素。依据多因素分析结果,构建风险预测模型列线图,其AUC为0.837(95%CI:0.788~0.888),特异度为73.5%,敏感度为84.7%,诊断效能高于FIB-4(0.739)、APRI(0.802)、GPR(0.800)、Forns指数(0.709)(Z值分别为2.815、2.271、1.989、2.722,P值分别为0.005、0.017、0.045、0.006)。 结论 基于前白蛋白、凝血酶时间、log10TBil、log10AFP建立的列线图模型具有一定的临床应用价值。

Abstract

Objective To investigate the main risk factors for liver cirrhosis in chronic hepatitis B (CHB) patients with high metabolic risk, to establish a noninvasive predictive model, and to compare the diagnostic efficiency of this model and other models including fibrosis-4 (FIB-4), aspartate aminotransferase-to-platelet ratio index (APRI), gamma-glutamyl transpeptidase-to-platelet ratio (GPR), and Forns index. Methods A total of 527 CHB patients with high metabolic risks who were admitted to The Second Affiliated Hospital of Guangxi Medical University from September 1, 2017 to October 31, 2022 were enrolled as subjects, and they were randomly divided into modeling group with 368 patients and validation group with 159 patients at a ratio of 7∶3. The LASSO regression analysis and the multivariate Logistic regression analysis were performed for the modeling group to identify independent risk factors, and a nomogram model was established. The receiver operating characteristic (ROC) curve, the calibration curve, and the decision curve analysis were used to validate the nomogram prediction model in the modeling group and the validation group and assess its discriminatory ability, calibration, and clinical practicability. The Delong test was used to compare the area under the ROC curve (AUC) of the nomogram prediction model and other models. Results The multivariate Logistic regression analysis showed that prealbumin (odds ratio [OR] = 0.993, 95% confidence interval [CI]: 0.988 — 0.999, P= 0.019), thrombin time (OR=1.182, 95% CI: 1.006 — 1.385, P=0.047), log10 total bilirubin (TBil) (OR=1.710, 95%CI: 1.239 — 2.419, P=0.001), and log10 alpha-fetoprotein (AFP) (OR=1.327, 95%CI: 1.052 — 1.683, P=0.018) were independent influencing factors for liver cirrhosis in CHB patients with high metabolic risks. A nomogram model for risk prediction was established based on the multivariate analysis, which had an AUC of 0.837 (95%CI: 0.788 — 0.888), a specificity of 73.5%, and a sensitivity of 84.7%, as well as a significantly higher diagnostic efficiency than the models of FIB-4 (0.739), APRI (0.802), GPR (0.800), and Forns index (0.709) (Z=2.815, 2.271, 1.989, and 2.722, P=0.005, 0.017, 0.045, and 0.006). Conclusion The nomogram model established based on prealbumin, thrombin time, log10 TBil, and log10 AFP has a certain clinical application value.

Graphical abstract

关键词

乙型肝炎, 慢性 / 高代谢风险 / 肝硬化 / 影响因素分析 / 列线图

Key words

Hepatitis B, Chronic / High Metabolic Risk / Liver Cirrhosis / Root Cause Analysis / Nomograms

引用本文

引用格式 ▾
邹玉萍,姚莉,邹军,李立威,蔡福庆,黄杰安. 高代谢风险慢性乙型肝炎患者发生肝硬化的影响因素分析及预测模型构建[J]. 临床肝胆病杂志, 2025, 41(06): 1105-1112 DOI:10.12449/JCH250616

登录浏览全文

4963

注册一个新账户 忘记密码

目前,全球HBV感染者大约为2.57亿,每年死亡人数高达106.22万1-2。研究表明,25%~30%的乙型肝炎可能会发展至肝硬化,而肝硬化早期常无明显症状,易被忽视,失代偿期肝硬化可出现消化道出血、肝性脑病、继发感染等严重并发症3。因此,早期识别肝硬化,及时干预,显得尤为关键。
代谢综合征是一种以中心性肥胖、高血压、高血糖、血脂异常等为特征的代谢紊乱性疾病4。血压升高、腹型肥胖、糖代谢异常、甘油三酯(TG)升高、高密度脂蛋白胆固醇(HDL-C)降低,这5项指标中至少有1项满足时则定义为代谢风险升高5。肝脏是葡萄糖摄取、存储、转化和分解的重要脏器,对于维持血糖平衡具有重要作用。代谢综合征已被公认为肝纤维化和肝硬化的主要风险因素6-7,其显著增加了慢性乙型肝炎(CHB)人群发生肝硬化及其并发症的风险,且呈剂量依赖性关系8。一项全国性队列研究显示,诊断糖尿病的CHB患者表现出更高的肝硬化和肝硬化失代偿风险9。尽管高代谢风险的概念在医学界逐渐受到关注,但CHB与高代谢风险之间的具体关系尚未明确。
肝活检被认为是诊断肝硬化并量化其严重程度的“金标准”10,但该检查具有一定的创伤性,极大限制了其在临床中的广泛应用。因此,临床上亟需早期、简便、准确、无创的方法来评价或预测肝硬化程度。目前,用于检测肝硬化的非侵入性方法主要涵盖血清学标志物和影像学的检测技术,然而尚无一种单一的血清学标志物能够准确且特异地反映肝硬化的程度。故本研究收集CHB患者的一般资料、实验室指标及FibroTouch检查结果,通过LASSO回归分析筛选其危险因素,构建高代谢风险CHB患者发生肝硬化的列线图预测模型,以期为肝硬化的早发现、早诊断提供参考依据。

1 资料与方法

1.1 研究对象

选取2017年9月1日—2022年10月31日在本院诊治的高代谢风险CHB患者。CHB的诊断符合《慢性乙型肝炎防治指南(2019年版)》11。纳入标准:(1)患者行FibroTouch检查;(2)FibroTouch检查前未进行抗病毒或者保肝治疗。排除标准:(1)合并腹水、肝脏占位性病变,ALT、AST、TBil水平均大于正常值上限3倍以上12;(2)其他嗜肝病毒、药物、酒精等导致的肝炎、自身免疫性肝病、非酒精性脂肪性肝病等;(3)合并类风湿关节炎、系统性红斑狼疮等;(4)临床资料不完整者。应用随机数字表法,将纳入患者按照7:3比例分为建模组和验证组。

1.2 高代谢风险定义

有1个代谢危险因素存在,即满足以下1项或更多项。(1)腹型肥胖:男性腰围≥90 cm,女性腰围≥85 cm;(2)高血糖:空腹血糖≥6.1 mmol/L或餐后2 h血糖≥7.8 mmol/L和/或已确诊为糖尿病并治疗者;(3)高血压:血压≥130/85 mmHg和/或已确认为高血压并治疗者;(4)空腹TG≥1.70 mmol/L;(5)空腹HDL-C<1.04 mmol/L5

1.3 研究方法

收集患者的一般资料、血清学资料以及FibroTouch(无锡海斯凯医疗科技有限公司)检测结果,当肝硬度测量值(LSM)>17.0 kPa时,诊断为肝硬化13

1.4 传统无创诊断模型

(1)FIB-4:由年龄、AST、ALT、PLT组成,计算公式FIB-4=(年龄×AST)/(PLT×ALT1/214;(2)APRI:由AST和PLT组成,计算公式APRI=AST(U/L)/AST正常值上限×100/PLT(×109/L)15;(3)GPR:由GGT和PLT组成,计算公式GPR=GGT(U/L)/GGT正常值上限/PLT(×109/L)16;(4)Forns指数:由年龄、PLT、GGT、总胆固醇组成,计算公式Forns指数=7.881-3.131×ln[PLT(×109/L)]+0.781×ln[GGT(U/L)]+3.467×ln[年龄(岁)]-0.014×总胆固醇(mg/dL)17

1.5 统计学方法

使用Empower(R) 4.1和RStudio 4.3.1等软件进行统计学分析。正态分布的计量资料以x¯±s表示,两组间比较采用成组t检验;非正态分布的计量资料以MP25P75)表示,两组间比较采用Mann-Whitney U检验。计数资料两组间比较采用χ2检验。对所有预筛选数据严格归一化处理,利用glmnet包进行LASSO回归,通过10倍交叉验证筛选预测变量,并将其进一步纳入多因素Logistic回归分析,筛选出最佳预测因素,构建预测模型,采用rms包构建列线图。绘制受试者操作特征曲线(ROC曲线)并计算曲线下面积(AUC)评估各模型预测肝硬化的诊断效能,采用Delong检验比较各模型的AUC差异。通过校准曲线和决策曲线来评估列线图模型的一致性和获益性。P<0.05为差异有统计学意义。

2 结果

2.1 建模组和验证组的基线特征

本研究共纳入527例CHB患者,其中建模组368例,验证组159例。两组患者临床资料(包括一般资料和生化资料)比较,差异均无统计学意义(P值均>0.05)(表1),具有可比性。

2.2 LASSO回归分析筛选预测变量

在建模组中,LASSO回归分析共有7项变量被保留,分别为PA、TT、log10TBil、log10DBil、log10GGT、log10TBA、log10AFP(图1)。经LASSO回归分析筛选的预测因子进行多因素Logistic回归分析(表2),最终构建预测模型的方程表达式:Logit(P)=-4.953-0.007×PA+0.159×TT+0.537×log10TBil+0.283×log10AFP。将多因素Logistic回归分析结果所筛选出的变量PA、TT、log10TBil、log10AFP纳入列线图,通过列线图可获得高代谢风险CHB患者发生肝硬化的预测概率(图2)。

2.3 列线图模型的验证及评价

2.3.1 列线图预测模型的验证

绘制列线图模型预测高代谢风险CHB患者发生肝硬化的ROC曲线,在建模组中该模型的AUC为0.837,特异度为73.5%,敏感度为84.7%,约登指数为0.582;验证组中AUC为0.832,特异度为84.0%,敏感度为73.1%,表明所建立的预测模型具有较高的诊断效能(图3)。

2.3.2 临床实用性

决策曲线的阈概率值分别在2%~68%和4%~70%时(图4),使用该列线图预测高代谢风险CHB患者肝硬化发生风险的净获益较高,表明该预测模型具有良好的临床实用性。

2.3.3 校准度

通过校准曲线和Hosmer-Lemeshow检验对模型的一致性进行评价,如图5所示,该模型的预测效应与实际结果间一致性良好(P=0.821)。Hosmer-Lemeshow检验结果显示,列线图模型具有较好的校准度(χ2值分别为14.29、8.40,P值分别为0.112、0.495)。

2.4 列线图模型与其他模型诊断效能的比较

列线图模型预测高代谢风险CHB患者发生肝硬化的AUC为0.837,显著高于FIB-4(0.739)、APRI(0.802)、GPR(0.800)和Forns指数(0.709)的AUC(Z值分别为2.815、2.271、1.989、2.722,P值分别为0.005、0.017、0.045、0.006),表明列线图模型的诊断效能高于FIB-4、APRI、GPR、Forns指数模型(表3图6)。

3 讨论

肝硬化是一种常见的慢性疾病,病因较多,其中以HBV感染最为普遍。肝活检作为一项有创操作,费用较高,且存在风险。因此,开展无创肝硬化诊断模型评估肝脏病变程度显得尤为迫切和重要18

有研究证实凝血指标、凝血因子、PLT和肝功能均能有效反映肝损伤19。本研究也表明TT是合并高代谢风险的CHB患者发生肝硬化的危险因素。AFP是肝癌的非特异性血清标志物,AFP水平的升高可能与肝细胞的再生过程、炎症反应以及肝硬化等多种因素有关20-23。Fung等24发现AFP与肝硬度呈正相关。PA能较好地反映CHB患者肝脏的炎症活动水平及肝纤维化程度25。Alb半衰期约为17~23 d,表明即使肝脏停止合成Alb,外周血中仍可保留一定水平的Alb。已有研究显示,血浆中PA水平较Alb下降更早,可以较早地反映肝功能的改变26。胆红素可能具有抗炎属性,并通过血红素加氧酶1发挥抗肝纤维化作用。既往已证明胆红素是肝损伤的标志物,并被纳入多种预后评分模型,如Child-Pugh评分和终末期肝病模型27。近年来,研究主要聚焦于胆红素对多种肝脏疾病的影响,结果显示胆红素水平与组织学特征呈负相关28-29。因此,血清学标志物有可能成为无创预测肝硬化的重要手段。

代谢综合征的患病率在全球范围内不断增加30。Yu等5在一项针对40~65岁慢性HBV感染男性患者的研究中,将高代谢危险因素与肝细胞癌风险增加联系起来,发现不同代谢风险负担的HBV携带者肝细胞癌发生率和死亡率存在显著差异。目前,国内研究发现部分CHB患者存在高代谢风险,但其与CHB患者发生肝硬化的相关性关注较少。本研究利用较大样本量,通过LASSO回归和多因素Logistic回归分析筛选出PA、TT、log10TBil、log10AFP是高代谢风险CHB患者发生肝硬化的独立影响因素,并基于这4项指标建立了预测肝硬化发生风险的列线图模型,通过ROC曲线、决策曲线和校准曲线等进行评估,显示该模型在区分度、获益度和校准度方面表现出良好的效果,具有一定的临床应用价值。同时,与FIB-4、APRI、GPR和Forns指数模型进行比较,该列线图模型的诊断效能较高。

APRI和FIB‐4对肝硬化的评估价值已被多项研究及临床所认可1331-32。APRI在CHB患者中评估肝硬化的AUC为0.72133,当APRI>2时诊断乙型肝炎肝硬化的阳性预测值仅为32.1%31。一项荟萃分析显示,FIB-4诊断乙型肝炎肝硬化的平均AUC为0.7834。与上述两种评价模型相比,本研究所构建模型对CHB患者肝硬化的预测效能更高,建模组中列线图的AUC为0.837(95% CI:0.788~0.888,P=0.001),高于APRI和FIB‐4,并且在验证组中也得到了类似的结果,同样证明了该列线图的效能更优。

本研究尚存在一些不足。肝脏超声瞬时弹性成像技术是一种无创的可在体外定量评估肝脂肪变性及肝硬度的新技术,常分为FibroScan和FibroTouch。多项研究分析表明,在与肝活检病理同步对照下,FibroScan与FibroTouch对肝硬化均有较好的诊断效能,并且肝组织分期之间存在明显的相关性,一致性良好1335-36。但是目前肝活检仍是诊断肝纤维化的“金标准”37,而本研究采用FibroTouch作为识别肝硬度的无创检测方法,缺少肝脏病理资料支撑,在诊断的准确性方面可能存在一定的偏倚。另外,本研究基于单中心,研究对象全部为成年中国人,因此,该研究结果能否推广到各区域、各民族及各年龄群体,目前尚无定论。

本研究通过对高代谢风险CHB患者的临床资料进行统计学分析,发现PA、TT、log10TBil、log10AFP是发生肝硬化的影响因素,构建列线图模型,可以直观定量地评估高代谢风险CHB患者发生肝硬化的风险。但未来还需进行多中心、大样本、前瞻性的队列研究,以获得普适性的预测模型,进行临床推广。

参考文献

[1]

REVILL PA, PENICAUD C, BRECHOT C, et al. Meeting the challenge of eliminating chronic hepatitis B infection[J]. Genes (Basel), 2019, 10(4): 260. DOI: 10.3390/genes10040260 .

[2]

FANNING GC, ZOULIM F, HOU JL, et al. Therapeutic strategies for hepatitis B virus infection: Towards a cure[J]. Nat Rev Drug Discov, 2019, 18(11): 827-844. DOI: 10.1038/s41573-019-0037-0 .

[3]

KHARE S, ARORA A, SHARMA P, et al. Performance of non-invasive blood parameters for ruling out significant liver fibrosis in patients with chronic hepatitis B[J]. J Clin Transl Hepatol, 2020, 8(2): 143-149. DOI: 10.14218/JCTH.2020.00002 .

[4]

LU JL, WANG LM, LI M, et al. Metabolic syndrome among adults in China: The 2010 China noncommunicable disease surveillance[J]. J Clin Endocrinol Metab, 2017, 102(2): 507-515. DOI: 10.1210/jc.2016-2477 .

[5]

YU MW, LIN CL, LIU CJ, et al. Influence of metabolic risk factors on risk of hepatocellular carcinoma and liver-related death in men with chronic hepatitis B: A large cohort study[J]. Gastroenterology, 2017, 153(4): 1006-1017. DOI: 10.1053/j.gastro.2017.07.001 .

[6]

REN HN, WANG JN, GAO Y, et al. Metabolic syndrome and liver-related events: A systematic review and meta-analysis[J]. BMC Endocr Disord, 2019, 19(1): 40. DOI: 10.1186/s12902-019-0366-3 .

[7]

WONG GL, CHAN HL, YU Z, et al. Coincidental metabolic syndrome increases the risk of liver fibrosis progression in patients with chronic hepatitis B: A prospective cohort study with paired transient elastography examinations[J]. Aliment Pharmacol Ther, 2014, 39(8): 883-893. DOI: 10.1111/apt.12658 .

[8]

HUANG SC, SU TH, TSENG TC, et al. Pre-existing and new-onset metabolic dysfunctions increase cirrhosis and its complication risks in chronic hepatitis B[J]. Am J Gastroenterol, 2024. DOI: 10.14309/ajg.0000000000002915 . [Online ahead of print]

[9]

HUANG YW, WANG TC, LIN SC, et al. Increased risk of cirrhosis and its decompensation in chronic hepatitis B patients with newly diagnosed diabetes: A nationwide cohort study[J]. Clin Infect Dis, 2013, 57(12): 1695-1702. DOI: 10.1093/cid/cit603 .

[10]

STERLING RK, KING WC, WAHED AS, et al. Evaluating noninvasive markers to identify advanced fibrosis by liver biopsy in HBV/HIV co-infected adults[J]. Hepatology, 2020, 71(2): 411-421. DOI: 10.1002/hep.30825 .

[11]

Chinese Society of Infectious Diseases, Chinese Medical Association; Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B (version 2019)[J]. J Clin Hepatol, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007 .

[12]

中华医学会感染病学分会, 中华医学会肝病学分会. 慢性乙型肝炎防治指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007 .

[13]

Expert Committee on Clinical Application Consensus of Transient Elastography (TE) Technology. Expert consensus on clinical application of transient elastography (TE) (2015 version)[J/CD]. Chin J Liver Dis (Electronic Version), 2015, 7(2): 12-18. DOI: 10.3969/j.issn.1674-7380.2015.02.002 .

[14]

瞬时弹性成像技术(TE)临床应用共识专家委员会. 瞬时弹性成像技术(TE)临床应用专家共识(2015年)[J/CD]. 中国肝脏病杂志(电子版), 2015, 7(2): 12-18. DOI: 10.3969/j.issn.1674-7380.2015.02.002 .

[15]

YOU H, WANG FS, LI TS, et al. Guidelines for the prevention and treatment of chronic hepatitis B (version 2022)[J]. J Clin Transl Hepatol, 2023, 11(6): 1425-1442. DOI: 10.14218/JCTH.2023.00320 .

[16]

STERLING RK, LISSEN E, CLUMECK N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection[J]. Hepatology, 2006, 43(6): 1317-1325. DOI: 10.1002/hep.21178 .

[17]

WAI CT, GREENSON JK, FONTANA RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C[J]. Hepatology, 2003, 38(2): 518-526. DOI: 10.1053/jhep.2003.50346 .

[18]

BOYD A, BOTTERO J, LACOMBE K. The γ-glutamyl transpeptidase-to-platelet ratio as a predictor of liver fibrosis in patients co-infected with HBV and HIV[J]. Gut, 2016, 65(4): 718-720. DOI: 10.1136/gutjnl-2015-310607 .

[19]

FORNS X, AMPURDANÈS S, LLOVET JM, et al. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model[J]. Hepatology, 2002, 36(4 Pt 1): 986-992. DOI: 10.1053/jhep.2002.36128 .

[20]

REN CY, FANG WD, CHEN G, et al. Value of albumin to alkaline phosphatase ratio in the clinical prediction of hepatitis B cirrhosis[J]. J Clin Exp Med, 2024, 23(16): 1707-1711. DOI: 10.3969/j.issn.1671-4695.2024.16.008 .

[21]

任才月, 方卫东, 陈刚, 白蛋白与碱性磷酸酶比值在乙型肝炎肝硬化预测中的临床价值[J]. 临床和实验医学杂志, 2024, 23(16): 1707-1711. DOI: 10.3969/j.issn.1671-4695.2024.16.008 .

[22]

PENG JL, HE GL, CHEN H, et al. Study on correlation between coagulation indexes and disease progression in patients with cirrhosis[J]. Am J Transl Res, 2021, 13(5): 4614-4623.

[23]

FORCE M, PARK G, CHALIKONDA D, et al. Alpha-fetoprotein (AFP) and AFP-L3 is most useful in detection of recurrence of hepatocellular carcinoma in patients after tumor ablation and with low AFP level[J]. Viruses, 2022, 14(4): 775. DOI: 10.3390/v14040775 .

[24]

WU D, ZHANG XJ, CHEN W. Correlation between serum HBV-DNA levels and liver function, CEA, AFP levels in patients with hepatitis B cirrhosis[J]. Hainan Med J, 2022, 33(21): 2815-2817. DOI: 10.3969/j.issn.1003-6350.2022.21.025 .

[25]

吴丹, 张锡坚, 陈伟. 乙肝肝硬化患者血清HBV-DNA水平与肝功能、CEA及AFP水平的相关性[J]. 海南医学, 2022, 33(21): 2815-2817. DOI: 10.3969/j.issn.1003-6350.2022.21.025 .

[26]

SCHMIDT LE, DALHOFF K. Alpha-fetoprotein is a predictor of outcome in acetaminophen-induced liver injury[J]. Hepatology, 2005, 41(1): 26-31. DOI: 10.1002/hep.20511 .

[27]

ZHANG LR, LIU Y, WANG ZZ. The combined detection predictive valve of in the risk hepatocellular carcinoma in liver cirrhosis patients infected with HBV GDF15, miR-122, AFP, and PIVKA-Ⅱ[J]. J Clin Exp Med, 2024, 23(2): 121-126. DOI: 10.3969/j.issn.1671-4695.2024.02.003 .

[28]

张黎然, 刘媛, 王珍子. GDF15、miR-122、AFP和PIVKA-Ⅱ联合评估在HBV感染肝硬化患者肝细胞癌发生风险中的预测价值[J]. 临床和实验医学杂志, 2024, 23(2): 121-126. DOI: 10.3969/j.issn.1671-4695.2024.02.003 .

[29]

FUNG J, LAI CL, FONG DY, et al. Correlation of liver biochemistry with liver stiffness in chronic hepatitis B and development of a predictive model for liver fibrosis[J]. Liver Int, 2008, 28(10): 1408-1416. DOI: 10.1111/j.1478-3231.2008.01784.x .

[30]

CASTÉRA L, SEBASTIANI G, LE BAIL B, et al. Prospective comparison of two algorithms combining non-invasive methods for staging liver fibrosis in chronic hepatitis C[J]. J Hepatol, 2010, 52(2): 191-198. DOI: 10.1016/j.jhep.2009.11.008 .

[31]

LUO Y. Application of combined detection of serum total bile acids and prealbumin in diagnosis of liver diseases[J]. Chongqing Med, 2007, 36(12): 1167-1168, 1170. DOI: 10.3969/j.issn.1671-8348.2007.12.022 .

[32]

罗云. 联合检测血清总胆汁酸和前清蛋白在肝脏疾病诊断中的应用[J]. 重庆医学, 2007, 36(12): 1167-1168, 1170. DOI: 10.3969/j.issn.1671-8348.2007.12.022 .

[33]

SHIN SK, KIM JH, PARK H, et al. Improvement of liver function and non-invasive fibrosis markers in hepatitis B virus-associated cirrhosis: 2 years of entecavir treatment[J]. J Gastroenterol Hepatol, 2015, 30(12): 1775-1781. DOI: 10.1111/jgh.13020 .

[34]

PURI K, NOBILI V, MELVILLE K, et al. Serum bilirubin level is inversely associated with nonalcoholic steatohepatitis in children[J]. J Pediatr Gastroenterol Nutr, 2013, 57(1): 114-118. DOI: 10.1097/MPG.0b013e318291fefe .

[35]

KUMAR R, RASTOGI A, MARAS JS, et al. Unconjugated hyperbilirubinemia in patients with non-alcoholic fatty liver disease: A favorable endogenous response[J]. Clin Biochem, 2012, 45(3): 272-274. DOI: 10.1016/j.clinbiochem.2011.11.017 .

[36]

SAKLAYEN MG. The global epidemic of the metabolic syndrome[J]. Curr Hypertens Rep, 2018, 20(2): 12. DOI: 10.1007/s11906-018-0812-z .

[37]

DONG MH, WU JW, YU XP, et al. Validation and comparison of seventeen noninvasive models for evaluating liver fibrosis in Chinese hepatitis B patients[J]. Liver Int, 2018, 38(9): 1562-1570. DOI: 10.1111/liv.13688 .

[38]

WANG SM, WANG N, YU Z, et al. Diagnostic values of APRI, AAR, and FIB-4 predictive models in autoimmune cirrhosis combined with esophagogastric fundal varices[J]. J Jilin Univ (Med Edit), 2024, 50(2): 523-528. DOI: 10.13481/j.1671-587X.20240227 .

[39]

王素梅, 王楠, 于珍, APRI、AAR和FIB-4等预测模型对自身免疫性肝硬化伴食管胃底静脉曲张的诊断价值[J]. 吉林大学学报(医学版), 2024, 50(2): 523-528. DOI: 10.13481/j.1671-587X.20240227 .

[40]

LI XT, HU BB, LIU HY, et al. Effectiveness of fibrosis-4 versus aspartate aminotransferase-to-platelet ratio index in evaluating liver fibrosis degree in patients with chronic HBV infection[J]. J Clin Hepatol, 2024, 40(12): 2424-2429. DOI: 10.12449/JCH241212 .

[41]

李小婷, 胡伯斌, 刘宏宇, FIB-4和APRI评估慢性HBV感染者肝纤维化程度的效果比较[J]. 临床肝胆病杂志, 2024, 40(12): 2424-2429. DOI: 10.12449/JCH241212 .

[42]

XIAO GQ, YANG JY, YAN LN. Comparison of diagnostic accuracy of aspartate aminotransferase to platelet ratio index and fibrosis-4 index for detecting liver fibrosis in adult patients with chronic hepatitis B virus infection: A systemic review and meta-analysis[J]. Hepatology, 2015, 61(1): 292-302. DOI: 10.1002/hep.27382 .

[43]

WANG M, LUO WP, ZHANG GH, et al. Diagnostic value of FibroTouch, FibroScan, and acoustic radiation force impulse for liver fibrosis in patients with primary biliary cholangitis[J]. J Clin Hepatol, 2021, 37(4): 817-822. DOI: 10.3969/j.issn.1001-5256.2021.04.019 .

[44]

王民, 罗文萍, 张冠华, FibroTouch、FibroScan及ARFI在原发性胆汁性胆管炎相关肝纤维化中的诊断价值[J]. 临床肝胆病杂志, 2021, 37(4): 817-822. DOI: 10.3969/j.issn.1001-5256.2021.04.019 .

[45]

QI M. Study and analysis of correlation of liver hardness tester FibroTouch and FibroScan with pathological stage of liver[J]. China Med Pharm, 2016, 6(21): 218-220. DOI: 10.3969/j.issn.2095-0616.2016.21.063 .

[46]

亓民. 研究分析肝脏硬度测定仪FibroTouch与FibroScan与肝脏病理分期的相关性[J]. 中国医药科学, 2016, 6(21): 218-220. DOI: 10.3969/j.issn.2095-0616.2016.21.063 .

[47]

Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. Consensus on the diagnosis and therapy of hepatic fibrosis(2019)[J]. J Clin Hepatol, 2019, 35(10): 2163-2172. DOI: 10.3969/j.issn.1001-5256.2019.10.007 .

[48]

中华医学会肝病学分会, 中华医学会消化病学分会, 中华医学会感染病学分会. 肝纤维化诊断及治疗共识(2019年)[J]. 临床肝胆病杂志, 2019, 35(10): 2163-2172. DOI: 10.3969/j.issn.1001-5256.2019.10.007 .

基金资助

AI Summary AI Mindmap
PDF (2712KB)

596

访问

0

被引

详细

导航
相关文章

AI思维导图

/