细菌性肝脓肿并发脓毒症的危险因素及列线图构建

郭嘉仪 ,  康海全 ,  王梦娇 ,  席德扬 ,  颜学兵 ,  李春杨

临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1143 -1149.

PDF (2166KB)
临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1143 -1149. DOI: 10.12449/JCH250621
其他肝病

细菌性肝脓肿并发脓毒症的危险因素及列线图构建

作者信息 +

Risk factors for pyogenic liver abscess comorbid with sepsis and construction of a nomogram prediction model

Author information +
文章历史 +
PDF (2217K)

摘要

目的 通过分析细菌性肝脓肿(PLA)并发脓毒症的临床特征,探讨PLA并发脓毒症的危险因素,并构建预测模型。 方法 回顾性分析2019年1月—2023年12月于徐州医科大学附属医院住院诊断为PLA的489例患者,根据是否并发脓毒症,分为脓毒症组(n=306)和非脓毒症组(n=183)。收集患者一般资料、实验室检查指标及结局指标。进一步将患者按7∶3的比例随机分为训练集342例和验证集147例,训练集用于筛选变量和构建模型,验证集用于测试模型性能。采用LASSO回归进行变量筛选,并进一步行多因素Logistic回归分析,建立预测模型,绘制列线图。使用校准图、受试者操作特征曲线(ROC曲线)和决策曲线分析对模型进行评估,并进行内部验证。对于符合正态分布的计量资料2组间比较采用成组t检验;非正态分布的计量资料2组间比较采用Mann-Whitney U检验。分类变量采用χ2检验分析组间差异。 结果 脓毒症组和非脓毒症组的脉率、平均动脉压、症状持续时间、合并肝硬化、合并恶性肿瘤、白细胞计数、中性粒细胞计数、淋巴细胞计数、血小板计数(PLT)、活化部分凝血酶原时间、纤维蛋白原、CRP、AST、ALT、Alb、TBil、肌酐、钾、预后营养指数(PNI)差异均有统计学意义(P值均<0.05)。在训练集中,通过LASSO回归分析,筛选出脉率、PLT、TBil、PNI 4个预测因子,进一步多因素Logistic回归分析显示,脉率(OR=1.033,95%CI:1.006~1.061,P=0.018)、PLT(OR=0.981,95%CI:0.975~0.987,P<0.001)、TBil(OR=1.086,95%CI:1.053~1.125,P<0.001)和PNI(OR=0.935,95%CI:0.882~0.988,P=0.019)是PLA患者发生脓毒症风险的独立影响因素,据此构建的模型表现出良好的预测能力,在训练集中模型的ROC曲线下面积为0.948(95%CI:0.923~0.973),在验证集中模型的ROC曲线下面积为0.912(95%CI:0.848~0.976)。决策曲线分析结果显示, 在阈值概率0.3~0.9范围内模型具有较好的净获益。 结论 采用脉率、PLT、TBil、PNI构建的预测模型及列线图,能较好预测PLA发生脓毒症的风险,具有临床价值。

Abstract

Objective To investigate the risk factors for pyogenic liver abscess (PLA) comorbid with sepsis by analyzing clinical features, and to construct a predictive model. Methods A retrospective analysis was performed for 489 patients who were hospitalized and diagnosed with PLA in The Affiliated Hospital of Xuzhou Medical University from January 2019 to December 2023, and according to the presence or absence of sepsis, they were divided into sepsis group with 306 patients and non-sepsis group with 183 patients. Related data were collected, including general information, laboratory markers, and outcome measures. The patients were further divided into a training set of 342 patients and a validation set of 147 patients at a ratio of 7∶3, and the training set was used for screening of variables and construction of a predictive model, while the validation set was used to test the performance of the model. An LASSO regression analysis was used for the screening of variables, and a multivariate Logistic regression analysis was used to construct the predictive model and plot a nomogram. The calibration curve, the receiver operating characteristic (ROC) curve, and the decision curve analysis were used for the validation of the model, and internal validation was performed for assessment. The independent-samples t test was used for comparison of normally distributed continuous data between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups; the chi-square test was used for comparison of categorical variables between groups. Results There were significant differences between the sepsis group and the non-sepsis group in pulse rate, mean arterial pressure, duration pf symptoms, comorbidity of liver cirrhosis or malignant tumor, leukocyte count, neutrophil count, lymphocyte count, platelet count (PLT), activated partial thromboplastin time, fibrinogen, C-reactive protein, aspartate aminotransferase, alanine aminotransferase, albumin, total bilirubin (TBil), creatinine, potassium, and prognostic nutritional index (PNI) (all P<0.05). In the training set, the LASSO regression analysis identified four predictive factors of pulse rate, PLT, TBil and PNI, and the multivariate Logistic regression analysis showed that pulse rate (odds ratio [OR]=1.033, 95% confidence interval [CI]: 1.006‍ ‍—‍ ‍1.061, P=0.018), PLT (OR=0.981, 95%CI: 0.975‍ ‍—‍ ‍0.987, P<0.001), TBil (OR=1.086, 95%CI: 1.053‍ ‍—‍ ‍1.125, P<0.001), and PNI (OR=0.935, 95%CI: 0.882‍ ‍—‍ ‍0.988, P=0.019) were independent influencing factors for the risk of sepsis in patients with PLA. The model constructed based on these factors showed a good predictive ability, with an area under the ROC curve of 0.948 (95%CI: 0.923‍ ‍—‍ ‍0.973) in the training set and 0.912 (95%CI: 0.848‍ ‍—‍ ‍0.976) in the validation set. The decision curve analysis showed that the model has a good net benefit within the range of 0.3‍ ‍—‍ ‍0.9 for threshold probability. Conclusion The nomogram prediction model constructed based on pulse rate, PLT, TBil, and PNI has a certain clinical value and can well predict the risk of sepsis in patients with PLA.

Graphical abstract

关键词

肝脓肿 / 脓毒症 / 危险因素 / 列线图

Key words

Liver Abscess / Sepsis / Risk Factors / Nomograms

引用本文

引用格式 ▾
郭嘉仪,康海全,王梦娇,席德扬,颜学兵,李春杨. 细菌性肝脓肿并发脓毒症的危险因素及列线图构建[J]. 临床肝胆病杂志, 2025, 41(06): 1143-1149 DOI:10.12449/JCH250621

登录浏览全文

4963

注册一个新账户 忘记密码

细菌性肝脓肿(pyogenic liver abscess,PLA)是一种临床常见的可危及生命的感染性疾病,是由细菌侵入肝脏引起的肝内化脓性病变1-2。PLA发病率在全球范围内均有逐年上升趋势,美国PLA年发病率约为2.3/10万,亚洲部分国家年发病率达12/10万~18/10万,在中老年男性中多见3。脓毒症是由机体对感染反应失调引起的危及生命的器官功能障碍,是PLA患者常见且严重的并发症4。本研究探讨PLA并发脓毒症的危险因素,建立一种简便易行的临床预测模型,以期在早期预测PLA发生脓毒症的风险。

1 资料与方法

1.1 研究对象

回顾性纳入2019年1月—2023年12月于本院住院并诊断为PLA的患者共489例,根据患者是否并发脓毒症,分为脓毒症组与非脓毒症组。PLA诊断标准2:(1)影像检查(即腹部超声和/或CT扫描)或手术发现有肝脓肿的证据;(2)血或脓液细菌培养阳性。脓毒症诊断标准5:(1)确诊感染或疑似感染;(2)SOFA评分较基线≥2分。纳入标准:(1)入院时符合PLA诊断标准;(2)年龄≥18岁;排除标准:(1)主要观察指标不完整;(2)合并其他类型肝脓肿(结核性肝脓肿、阿米巴肝脓肿)。

进一步将患者按7∶3的比例随机分为训练集和验证集,训练集用于筛选变量和构建模型,验证集用于验证模型性能。研究设计的流程见图1

1.2 数据收集

对患者的临床资料进行回顾性分析,记录每位患者入院24 h内的临床数据:人口统计学数据;身体质量指数(BMI)、脉率、平均动脉压(MAP);临床表现,包括发热、腹痛、胃肠道症状;合并症,包括糖尿病、高血压、胆道疾病等;实验室检查,包括白细胞计数(WBC)、淋巴细胞计数(LYM)、中性粒细胞计数(NEUT)、血小板计数(PLT)、C反应蛋白(CRP)、活化部分凝血酶原时间(APTT)、纤维蛋白原(Fib)、AST、ALT、Alb、TBil、肌酐(Cr)、钾(K);计算预后营养指数(prognostic nutrition index,PNI)=Alb+5×LYM;影像学检查,包括脓肿部位及数量、是否环状强化;治疗方式,包括抗生素治疗、抗生素联合经皮穿刺引流、抗生素联合手术等;不良结局,包括死亡、侵袭综合征(定义为远端感染与PLA培养物中的细菌相同6)、感染性休克(根据2021年脓毒症及脓毒性休克管理国际指南5)、急性呼吸衰竭(定义为氧合指数≤200 mmHg或≤300 mmHg7)、急性肝衰竭(定义为出现伴有肝性脑病和凝血功能障碍的严重急性肝损伤8)、急性肾衰竭(定义为7天内Cr升高≥50%或2天内Cr升高≥26.5 µmol/L或少尿≥6 h9)。

1.3 统计学方法

使用R软件(版本4.4.1)进行统计分析。对于符合正态分布的计量资料采用x¯±s表示,2组间比较采用成组t检验;非正态分布的计量资料采用MP25P75)表示,2组间比较采用Mann-Whitney U检验。分类变量采用χ2检验分析组间差异。通过LASSO回归分析筛选出与PLA发生脓毒症风险相关的变量,再运用多因素Logistic回归分析构建列线图模型,并绘制受试者操作特征曲线(ROC曲线)、校准曲线及决策曲线以评估模型的判别能力、一致性及临床实用性。P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

489例PLA患者中非脓毒症组306例,脓毒症组183例。PLA患者最常见的症状是发热(82.82%),其次是腹痛(38.65%)。36.81%患有糖尿病,26.38%患有高血压,11.25%患有胆道疾病。301例患者(61.55%)为隐源性感染;51例患者(10.43%)来源于其他,包括门静脉感染、血流播散感染、直接肝脏感染;137例患者(28.02%)为胆源性感染,包括胆道结石、急性胆囊炎、化脓性胆管炎。两组间的脉率、MAP、症状持续时间、合并肝硬化、合并恶性肿瘤、WBC、NEUT、LYM、PLT、CRP、APTT、Fib、AST、ALT、Alb、TBil、Cr、K、PNI差异均有统计学意义(P值均<0.05)(表12)。训练集和验证集组所有基线特征差异均无统计学意义(P值均>0.05)。

影像学表现,两组患者绝大多数都有右叶PLA,CT影像学表现均有环形强化,两组间差异均无统计学意义(P值均>0.05)。PLA患者的治疗包括单用抗生素治疗(38.45%)、抗生素联合经皮穿刺引流(55.62%)、抗生素联合手术(5.93%),但各组间无明显差异(P>0.05)。两组共出现19例死亡,16例侵袭综合征,11例急性肾衰竭,5例急性肝衰竭,28例急性呼吸衰竭,24例脓毒性休克;脓毒症组更易出现严重并发症(表12)。

2.2 预测模型的建立

在训练集中运用LASSO回归分析并进行交叉验证(图2),筛选出脉率、PLT、PNI、TBil 4个具有非零系数特征的变量。将其纳入多因素Logistic回归分析,结果示脉率、PLT、TBil、PNI是PLA发生脓毒症风险的独立影响因素(表3),基于以上结果建立预测模型:评分=-1.135+0.032×脉率-0.019×PLT+0.082×TBil-0.067×PNI。依据Logistic回归分析结果构建PLA发生脓毒症风险列线图(图3),用于预测PLA发生脓毒症的风险概率。

2.3 预测模型的验证

在训练集中,列线图的ROC曲线下面积(AUC)为0.948(95%CI:0.923~0.973);在验证集中,AUC为0.912(95%CI:0.848~0.976)(图4),表明预测模型区分度良好。使用校准图和Hosmer-Lemeshow检验校准预测模型,从校准曲线可以看出,模型预测概率接近实际概率(图5);Hosmer-Lemeshow检验显示拟合一致性优(训练集:χ2=8.985,P=0.534;验证集:χ2=2.225,P=0.329)。决策曲线分析显示,在阈值概率0.3~0.9范围内模型具有较好的净获益(图6)。

3 讨论

PLA是一种严重的肝脏感染性疾病,而脓毒症及脓毒症休克作为其可能出现的严重并发症,如果未能及时诊断和治疗,可导致多器官功能障碍,甚至危及生命10-12。因此,早期预测PLA并发脓毒症具有重要意义。

本研究发现PLA患者发生脓毒症风险与脉率升高、PLT降低、TBil升高、PNI降低有关,并建立了PLA发生脓毒症风险的预测模型,其表现出良好的校准力及判别力。李泽标等13基于PNI、SII等建立预测模型,AUC为0.886(95%CI:0.837~0.934),本研究预测模型在训练集及验证集中的AUC分别为0.948(95%CI: 0.923~0.973)、0.912(95%CI:0.848~0.976),预测效能较高。相较于Li等14以年龄、血培养阳性、降钙素原、ALT、血尿素氮和D-二聚体为基础建立的列线图模型,本研究在临床上更简便易行。

脉率是检测生命体征的关键指标。本研究中发热是PLA患者常见症状,体温升高导致机体代谢率增加,心跳加快以满足机体需求,进而使脉率增快。若脉率持续增快,常提示感染严重,可能存在脓毒症等并发症的风险15。在管理PLA并发脓毒症患者时,持续监测脉率有助于及时识别病情的变化。

研究表明,脓毒症早期炎症反应和凝血系统激活时可引起PLT数量、形态及分布状态的改变16。严重脓毒症/脓毒症休克患者常伴PLT降低,与Li等17的研究结果一致,这是因为细菌感染引发的炎症反应可激活体内的免疫机制,导致PLT破坏增加;PLA导致的肝功能受损会使凝血因子合成能力下降,进一步影响PLT的功能和寿命18。此外,研究发现PLT减少在脓毒症患者中往往预示着预后不良19

TBil是反映肝胆功能的重要指标。在PLA患者中,细菌毒素或免疫反应可导致肝细胞功能受损及红细胞破坏(溶血),后者会释放大量的游离胆红素,使TBil升高。此外,本研究中,胆源性因素是PLA的第二大病因,原发性胆源性疾病也可导致TBil升高。TBil越高,PLA发生脓毒症的风险越大。还有研究表明,高胆红素血症是PLA患者死亡的危险因素20-21

PNI已被证明与多种疾病不良预后相关,如脓毒症、癌症等22-23。既往研究发现PNI与糖尿病肾病的发病率相关,是2型糖尿病患者全因死亡率的独立预测因素24。本研究表明,PNI是PLA发生脓毒症风险的独立影响因素,原因如下:(1)淋巴细胞在免疫防御中发挥着重要作用,在PLA的早期阶段,机体的免疫反应主要表现为炎症细胞的聚集和炎症介质的释放,患者外周血淋巴数量常会发生改变,随着脓毒症的发生,其引发的过度炎症反应导致淋巴细胞凋亡增加25;(2)Xu等26指出,PLA会损害肝脏的合成代谢,使营养状况出现明显恶化。同时,脓毒症患者长期处于高分解代谢状态,易导致营养不良、免疫力下降和器官功能障碍27。因此,PNI在评估脓毒症严重程度方面具有重要意义。

本研究也存在一定局限性。首先,数据来自单中心回顾性研究,可能存在偏倚问题,尚需要多中心、前瞻性研究进一步证明;其次,本研究缺乏外部验证,适用性有限。

总之,本研究通过建立预测模型及列线图证明了脉率、PLT、PNI、TBil对于早期识别PLA发生脓毒症风险具有重要意义,对早期筛查和及时预防并发症的发生具有一定指导价值。应用本列线图,临床医生可以更早地进行病情干预,优化治疗方案,从而提高患者生存率和生活质量。

参考文献

[1]

KHIM G, EM S, MO S, et al. Liver abscess: Diagnostic and management issues found in the low resource setting[J]. Br Med Bull, 2019, 132(1): 45-52. DOI: 10.1093/bmb/ldz032 .

[2]

Emergency Medicine Branch of the Chinese Medical Association. Emergency expert consensus on diagnosis and treatment of bacterial liver abscess[J]. Chin J Emerg Med, 2022, 31(3): 273-280. DOI: 10.3760/cma.j.issn.1671-0282.2022.03.003 .

[3]

中华医学会急诊医学分会. 细菌性肝脓肿诊治急诊专家共识[J]. 中华急诊医学杂志, 2022, 31(3): 273-280. DOI: 10.3760/cma.j.issn.1671-0282.2022.03.003 .

[4]

ZHANG J, GAO Y, DU ZQ, et al. Clinical features and prognosis of gas-forming and non-gas-forming pyogenic liver abscess: A comparative study[J]. Surg Infect (Larchmt), 2021, 22(4): 427-433. DOI: 10.1089/sur.2020.245 .

[5]

SEYMOUR CW, LIU VX, IWASHYNA TJ, et al. Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 762-774. DOI: 10.1001/jama.2016.0288 .

[6]

EVANS L, RHODES A, ALHAZZANI W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49(11): e1063-e1143. DOI: 10.1097/ccm.0000000000005337 .

[7]

VILLANUEVA DM, TAUNK P, KRISHNAN P, et al. Emerging multiorgan Klebsiella pneumoniae invasive syndrome leading to septic shock: A case report and review of the literature[J]. Cureus, 2022, 14(7): e26647. DOI: 10.7759/cureus.26647 .

[8]

HELMS J, CATOIRE P, ABENSUR VUILLAUME L, et al. Oxygen therapy in acute hypoxemic respiratory failure: Guidelines from the SRLF-SFMU consensus conference[J]. Ann Intensive Care, 2024, 14(1): 140. DOI: 10.1186/s13613-024-01367-2 .

[9]

Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guideline for diagnosis and treatment of liver failure (2018)[J]. J Clin Hepatol, 2019, 35(1): 38-44. DOI: 10.3969/j.issn.1001-5256.2019.01.007 .

[10]

中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2018年版)[J]. 临床肝胆病杂志, 2019, 35(1): 38-44. DOI: 10.3969/j.issn.1001-5256.2019.01.007 .

[11]

KELLUM JA, ROMAGNANI P, ASHUNTANTANG G, et al. Acute kidney injury[J]. Nat Rev Dis Primers, 2021, 7(1): 52. DOI: 10.1038/s41572-021-00284-z .

[12]

CHO H, LEE ES, LEE YS, et al. Predictors of septic shock in initially stable patients with pyogenic liver abscess[J]. Scand J Gastroenterol, 2017, 52(5): 589-594. DOI: 10.1080/00365521.2017.1288757 .

[13]

HE MY, WANG CM, ZHAI WL, et al. Study the influence factors of treatment prognosis in septic shock patients[J]. Clin J Med Offic, 2023, 51(6): 570-573, 578. DOI: 10.16680/j.1671-3826.2023.06.06 .

[14]

贺明轶, 王春梅, 翟文亮, 脓毒症休克患者预后影响因素研究[J]. 临床军医杂志, 2023, 51(6): 570-573, 578. DOI: 10.16680/j.1671-3826.2023.06.06 .

[15]

HU XD, BA XT, ZHU P. Risk factors and prognosis analysis of gastrointestinal bleeding secondary to sepsis[J]. J Clin Exp Med, 2023, 22(19): 2032-2035. DOI: 10.3969/j.issn.1671-4695.2023.19.005 .

[16]

胡向党, 巴晓彤, 朱萍. 脓毒症继发消化道出血危险因素及预后分析[J]. 临床和实验医学杂志, 2023, 22(19): 2032-2035. DOI: 10.3969/j.issn.1671-4695.2023.19.005 .

[17]

LI ZB, LI QC, WU QP, et al. Analysis of risk factors for sepsis caused by liver abscess and establishment and verification of prediction model based on PNI and SII[J]. J Hainan Med Univ, 2024, 30(12): 930-938. DOI: 10.13210/j.cnki.jhmu.20240307.002 .

[18]

李泽标, 李秋呈, 吴秋萍, 肝脓肿致脓毒症的危险因素分析及基于PNI、SII预测模型的建立与验证[J]. 海南医学院学报, 2024, 30(12): 930-938. DOI: 10.13210/j.cnki.jhmu.20240307.002 .

[19]

LI J, WANG Y, LUO JH, et al. Development and validation of a nomogram for predicting sepsis in patients with pyogenic liver abscess[J]. Sci Rep, 2023, 13(1): 10849. DOI: 10.1038/s41598-023-37907-2 .

[20]

LIU F, YAO J, LIU CY, et al. Construction and validation of machine learning models for sepsis prediction in patients with acute pancreatitis[J]. BMC Surg, 2023, 23(1): 267. DOI: 10.1186/s12893-023-02151-y .

[21]

COX D. Sepsis-it is all about the platelets[J]. Front Immunol, 2023, 14: 1210219. DOI: 10.3389/fimmu.2023.1210219 .

[22]

LI Y, ZOU ZP, ZHANG YL, et al. Dynamics in perioperative neutrophil-to-lymphocyte*platelet ratio as a predictor of early acute kidney injury following cardiovascular surgery[J]. Ren Fail, 2021, 43(1): 1012-1019. DOI: 10.1080/0886022X.2021.1937220 .

[23]

MEYER J, LEJMI E, FONTANA P, et al. A focus on the role of platelets in liver regeneration: Do platelet-endothelial cell interactions initiate the regenerative process?[J]. J Hepatol, 2015, 63(5): 1263-1271. DOI: 10.1016/j.jhep.2015.07.002 .

[24]

GRECO E, LUPIA E, BOSCO O, et al. Platelets and multi-organ failure in sepsis[J]. Int J Mol Sci, 2017, 18(10): 2200. DOI: 10.3390/ijms18102200 .

[25]

CZERWONKO ME, HUESPE P, BERTONE S, et al. Pyogenic liver abscess: Current status and predictive factors for recurrence and mortality of first episodes[J]. HPB (Oxford), 2016, 18(12): 1023-1030. DOI: 10.1016/j.hpb.2016.09.001 .

[26]

ZHANG SY, CHEN YX. Progress in diagnosis and treatment of pyogenic liver abscess[J]. J Clin Hepatol, 2018, 34(7): 1577-1580. DOI: 10.3969/j.issn.1001-5256.2018.07.046 .

[27]

章顺轶, 陈岳祥. 细菌性肝脓肿诊治进展[J]. 临床肝胆病杂志, 2018, 34(7): 1577-1580. DOI: 10.3969/j.issn.1001-5256.2018.07.046 .

[28]

XIE TH, XIN Q, CHEN R, et al. Clinical value of prognostic nutritional index and neutrophil-to-lymphocyte ratio in prediction of the development of sepsis-induced kidney injury[J]. Dis Markers, 2022, 2022: 1449758. DOI: 10.1155/2022/1449758 .

[29]

CHEN L, BAI P, KONG XY, et al. Prognostic nutritional index (PNI) in patients with breast cancer treated with neoadjuvant chemotherapy as a useful prognostic indicator[J]. Front Cell Dev Biol, 2021, 9: 656741. DOI: 10.3389/fcell.2021.656741 .

[30]

ZHANG JL, CHEN Y, ZOU L, et al. Prognostic nutritional index as a risk factor for diabetic kidney disease and mortality in patients with type 2 diabetes mellitus[J]. Acta Diabetol, 2023, 60(2): 235-245. DOI: 10.1007/s00592-022-01985-x .

[31]

GIRARDOT T, RIMMELÉ T, VENET F, et al. Apoptosis-induced lymphopenia in sepsis and other severe injuries[J]. Apoptosis, 2017, 22(2): 295-305. DOI: 10.1007/s10495-016-1325-3 .

[32]

XU J, ZHOU XH, ZHENG C. The geriatric nutritional risk index independently predicts adverse outcomes in patients with pyogenic liver abscess[J]. BMC Geriatr, 2019, 19(1): 14. DOI: 10.1186/s12877-019-1030-5 .

[33]

DING R, XIE W, LIU LG, et al. Clinical features of Klebsiella pneumoniae liver abscess and influencing factors for prognosis[J]. J Clin Hepatol, 2022, 38(7): 1584-1589. DOI: 10.3969/j.issn.1001-5256.2022.07.023 .

[34]

丁蕊, 谢雯, 刘丽改, 肺炎克雷伯菌肝脓肿的临床特征及预后影响因素分析[J]. 临床肝胆病杂志, 2022, 38(7): 1584-1589. DOI: 10.3969/j.issn.1001-5256.2022.07.023 .

基金资助

AI Summary AI Mindmap
PDF (2166KB)

773

访问

0

被引

详细

导航
相关文章

AI思维导图

/