表观遗传学在瘦型非酒精性脂肪性肝病中的作用及临床应用前景

徐俊姣 ,  刘素彤 ,  张琪振 ,  管雅捷 ,  崔蓓蕾 ,  吴文静 ,  刘鸣昊

临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1161 -1166.

PDF (829KB)
临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1161 -1166. DOI: 10.12449/JCH250624
综述

表观遗传学在瘦型非酒精性脂肪性肝病中的作用及临床应用前景

作者信息 +

Role and clinical application prospect of epigenetics in lean nonalcoholic fatty liver disease

Author information +
文章历史 +
PDF (848K)

摘要

表观遗传学机制在非酒精性脂肪性肝病(NAFLD)的发生、发展中扮演着至关重要的角色,尤其是在瘦人群体中,相关表观遗传学机制的研究为揭示NAFLD的潜在病因和治疗策略提供了新的线索和方向。本文介绍了近年表观遗传学在瘦型NAFLD发展中的作用,分析了瘦型NAFLD表观遗传学方面的最新研究进展,简述了表观遗传学的基本概念,包括DNA甲基化、组蛋白修饰和非编码RNA调控,并探讨了表观遗传学改变如何影响瘦型NAFLD的发病机制、疾病进展以及治疗策略。

Abstract

Epigenetic mechanisms play a crucial role in the development and progression of nonalcoholic fatty liver disease (NAFLD), especially among lean individuals. The research on related epigenetic mechanisms has provided new clues and directions for revealing the underlying causes and treatment strategies of NAFLD. This article introduces the role of epigenetics in the development and progression of NAFLD among lean individuals in recent years, analyzes the latest research advances in the epigenetics of NAFLD in this population, and briefly describes the basic concepts of epigenetics, including DNA methylation, histone modifications, and non-coding RNA regulation. This article also discusses how epigenetic alterations impact the pathogenesis, disease progression, and treatment strategies of NAFLD in lean individuals.

Graphical abstract

关键词

非酒精性脂肪性肝病 / 表观基因组学 / 病理过程

Key words

Non-alcoholic Fatty Liver Disease / Epigenomics / Pathologic Processes

引用本文

引用格式 ▾
徐俊姣,刘素彤,张琪振,管雅捷,崔蓓蕾,吴文静,刘鸣昊. 表观遗传学在瘦型非酒精性脂肪性肝病中的作用及临床应用前景[J]. 临床肝胆病杂志, 2025, 41(06): 1161-1166 DOI:10.12449/JCH250624

登录浏览全文

4963

注册一个新账户 忘记密码

非酒精性脂肪性肝病(NAFLD)包括非酒精性单纯性肝脂肪变、非酒精性脂肪性肝炎(NASH)、肝硬化和肝细胞癌(HCC)1,是指排除酒精等明显造成肝损伤的因素之外的一种多系统代谢性疾病2。截至2021年5月,全球NAFLD总体患病率估算为32.4%3,并且随着时间的推移,其总体患病率不断升高。目前NASH已成为全球最常见的慢性肝病之一,并迅速成为HCC患者中肝移植的首要适应证4。据报道,NAFLD患者中有19.2%是瘦人体质5。相较于非瘦型NAFLD,瘦型NAFLD患者的糖尿病、高血压、高甘油三酯血症、中心性肥胖和代谢综合征的患病率较低6,具有更好的代谢特征,被认为是相对良性的亚型,但瘦型NAFLD会出现更严重的肝脏疾病进展和不良临床结局7。瘦型NAFLD的发展具有复杂性和多因素性,其确切机制尚未完全清楚。近年来,越来越多的证据证明在瘦型NAFLD发生发展中表观遗传调控具有关键作用。
关于瘦型NAFLD,一般认为NAFLD患者身体质量指数(BMI)<25 kg/m2即可诊断,但在亚洲人群中建议BMI<23 kg/m2[8。研究显示,与BMI正常者相比,BMI<18.5 kg/m2的体质量不足者,其NAFLD的患病率更低;与非瘦型NAFLD相比,体质量不足的NAFLD患者可能更年轻,收缩压和舒张压更低9。根据瘦型NAFLD流行病学、预后和自然病程,可将其分为两种亚型10:1型以内脏肥胖和胰岛素抵抗为核心,其发病受环境和遗传易感性及表观遗传因素影响更强11;而2型特指单基因疾病所引发的肝脂肪变性12,由单基因疾病驱动,无内脏肥胖的瘦型NAFLD个体的鉴别诊断可能会被忽视。两种亚型与非瘦型NAFLD的区别如表1所示。综上,瘦型NAFLD疾病机制复杂,受到多种表观遗传机制的影响。因此,本文就瘦型NAFLD的表观遗传调控相关研究进展进行综述。

1 表观遗传学基础

表观遗传学涉及表型变异性、代谢、疾病、遗传甚至进化的研究,是指在基本DNA序列不变的情况下,由于环境因素,遗传信息通过某些机制或途径,发生的可遗传给后代并能影响细胞表型的基因表达调控变化13。表观遗传学可以通过对组蛋白和核酸进行共价修饰,在不改变DNA序列的情况下调节基因序列,协同调节染色质结构14。本文涉及的瘦型NAFLD表观遗传现象主要包括3种调节机制:DNA甲基化修饰、组蛋白修饰和非编码RNA(ncRNA)。

1.1 DNA甲基化修饰

DNA甲基化是指将甲基转移到胞嘧啶的C5位上,从而形成5-甲基胞嘧啶,通过募集参与基因抑制的蛋白质或者抑制转录因子与DNA的结合来调节基因的表达15。其通过甲基化位点的组蛋白标记稳定遗传,且DNA序列不发生变化16。研究表明,DNA甲基化增加导致长链脂肪酸延伸酶2(elongation of very long chain fatty acids-like protein 2, Elovl2)表达水平下调。Elovl2是一种多不饱和脂肪酸合成的主要控制基因17,其缺乏会导致肝脏炎症的恶化,若Elovl2功能受损则会干扰脂质合成,加重内质网应激和线粒体障碍18。Elovl2通过合成肝脏中的二十二碳六烯酸来控制脂肪从头合成途径,并且还能以不依赖于固醇调节元件结合蛋白1的方式,调节脂质储存以及脂肪量的增加19。综上,DNA甲基化异常模式可能成为瘦型NAFLD诊断和预后的生物学标志及治疗新靶点。

1.2 组蛋白修饰

组蛋白是指带正电荷的蛋白质与带负电荷的DNA紧密结合并组装成核小体复合物20。研究指出,macroH2A1是最大的H2A变体,以两种选择性剪接亚型存在:macroH2A1.1和macroH2A1.2,二者可调节细胞可塑性和增殖21。在瘦型NAFLD患者血清中观察到macroH2A1.1和macroH2A1.2无论单独存在还是与H2B结合,其水平均明显下降22。这表明组蛋白修饰参与了瘦型NAFLD的发展机制。

1.3 ncRNA

ncRNA代表一类不编码蛋白质的RNA分子,被认为是积极参与多种生理和病理过程的重要表观遗传调节因子23。其中微小RNA(microRNA, miRNA)是小ncRNA1的一个亚群,在生物过程和表观遗传机制的调控中发挥重要作用,被证明是NAFLD炎症的重要调节因子24。研究显示,在瘦型NAFLD患者血清中miR-4488表达水平升高,提示miR-4488具有无创和早期检测瘦型NAFLD的潜力25。综上,miRNA作为小ncRNA的一个子集,已被证实是NAFLD炎症的关键调节因子,凸显了其在代谢性疾病中的重要性,通过靶向miRNA的相关机制,可能为瘦型NAFLD的有效诊断和治疗提供新途径。

2 瘦型NAFLD的表观遗传学特征

2.1 瘦型NAFLD与非瘦型NAFLD的表观遗传学差异

研究表明,瘦型NAFLD与非瘦型NAFLD在甲基化模式方面不同,如在苓桂术甘汤干预后,非瘦型NAFLD患者蛋白磷酸酶1调节亚基3A和自噬相关3的DNA N6甲基腺嘌呤修饰水平明显增高,而瘦型NAFLD患者中没有明显变化26。在HCC的相关研究中,瘦型与非瘦型NAFLD差异甲基化区域(differentially methylated region,DMR)不存在重叠,且甲基化差异巨大,非瘦型NASH-HCC中参与Wnt信号通路的基因在低甲基化DMR中富集,而瘦型NASH-HCC由包括脂质代谢的其他信号通路驱动27。此外,在瘦型NAFLD中组蛋白修饰也表现出独特的模式。如组蛋白水平可以区分脂肪变性的程度,瘦型NAFLD组蛋白变体macroH2A1.2的下调几乎是macroH2A1.1的两倍22。macroH2A1.2在瘦型NAFLD患者中呈现出不同的分布特征,这种分布差异可能对染色质结构和基因表达产生深远影响。上述表观遗传学上的差异进一步揭示了瘦型NAFLD独特的病理机制。

2.2 瘦型NAFLD中特异性表观遗传标记的识别

针对瘦型NAFLD的检测极其困难且容易被忽视,特异性表观遗传标记的识别具有重要意义。有研究人员通过高通量测序技术发现了一些特异性DNA甲基化位点,这些位点在瘦型NAFLD患者中显著不同于健康对照组。如PNPLA6和LDLRAP1在脂质代谢中存在甲基化差异27。这些与脂质代谢相关的基因在瘦型NAFLD患者中会影响疾病的进展,并可以为新兴的治疗方案提供靶点。组蛋白变体macroH2A1.1和macroH2A1.2的有关变化亦可以作为瘦型NAFLD患者的非侵入性标记位点22。另有研究表明,在ncRNA中,miR-367不仅在肥胖小鼠中表达上调,其过表达也会导致瘦型小鼠甘油三酯累积28。因此,评估循环miRNA谱有可能成为未来检测肝病严重程度的无创方法,并且对miRNA领域的研究可能会促进开发瘦型NAFLD的新型诊断和治疗方式。综上,这些特异性表观遗传标记有助于理解瘦型NAFLD的发病机制,并为早期诊断和个性化治疗提供新的思路。

3 表观遗传学在瘦型NAFLD发病机制中的作用

3.1 表观遗传学改变影响脂质代谢和炎症反应

表观遗传学改变在瘦型NAFLD的发病机制中扮演了重要角色,特别是在脂质代谢和炎症反应方面。DNA甲基化、组蛋白修饰和ncRNA等机制均能够显著影响基因表达,从而调控脂质代谢途径(图1)。

DNA甲基化的相关变化会导致脂质代谢相关基因的表达异常,从而促进肝脏脂肪堆积。磷脂酰胆碱代谢与NAFLD有关,而肝脏中大约30%的磷脂酰胆碱通过磷脂酰乙醇胺N-甲基转移酶(phosphatidylethanolamine n-methyltransferase, PEMT)途径产生,即将甲基转移到胞嘧啶上,并将磷脂酰乙醇胺催化为磷脂酰胆碱29。研究表明,相比非瘦型NAFLD,瘦型NAFLD中PEMT RS7946变异的风险提高3倍30。这可能会损害PEMT活性和瘦人NASH表型的发展。而肝脏X受体能够增强脂肪生成,促进脂肪和肝组织中大多数产脂和成脂基因的表达31。这些修饰能够改变染色质结构,使得基因更易于或更难以被转录。此外,组蛋白修饰也在调控脂质代谢基因的表达中起到了关键作用,如沉默信息调节因子2相关酶1能够影响脂质和肝脏葡萄糖代谢32。而核受体亚家族2F组成员6(nuclear receptor subfamily 2 group F member 6,NR2F6)是甘油三酯稳态的重要调节因子和NAFLD发展的致病因素,NR2F6上调可以促进脂肪酸转运蛋白CD36的表达,从而增强肝脏中脂肪酸的摄取和甘油三酯积累,与肝脂肪变性密切相关。并且NR2F6过表达可以增强乙酰化组蛋白H3在CD36启动子上NR2F6结合区域的富集,从而促进NR2F6转录33。ncRNA,特别是miRNA,可通过与mRNA结合并抑制其翻译,进一步调控脂质代谢基因的表达。如N6-甲基腺苷(N6-methyladenosine,m6A)是真核生物体内最为丰富的内部RNA修饰之一34,这种甲基化修饰在脂质代谢中发挥独特作用,涉及肝细胞炎症和血管重建35,从而可以推测,通过靶向特定的m6A调节因子,可能为NAFLD提供潜在的治疗方法。而通过抑制FTO(脂肪量与肥胖)相关蛋白的功能,可以增加m6A水平或者阻止油酸诱导的甘油三酯的产生36-37

上述表观遗传学改变不仅会影响NAFLD的脂质代谢,还能通过调控炎症相关基因的表达,促进炎症反应的发生和维持。然而,针对瘦型NAFLD疾病中这些表观遗传学改变的具体作用及发展机制还需要进一步探究。

3.2 表观遗传学在瘦型NAFLD中胰岛素抵抗中的作用

胰岛素抵抗是瘦型NAFLD 1型发展的关键因素之一,表观遗传学改变在其中发挥了重要作用。在生理条件下,胰岛素与受体结合会激活固醇调节元件结合蛋白1,可以促进肝脏从头脂肪生成。因此胰岛素抵抗对于减轻NAFLD的进展和改善患者健康状况极其重要。表观遗传机制能够通过调控胰岛素信号通路相关基因的表达,从而影响胰岛素敏感性。其中组蛋白去乙酰化酶(如组蛋白去乙酰化酶3和组蛋白去乙酰化酶8)可以促进甘油三酯代谢并增强胰岛素敏感性38。研究表明,利用支链酮酸脱氢酶激酶的小分子变构抑制剂BT2后,在瘦型小鼠中能够观察到胰岛素敏感性快速改善,且BT2治疗可减少脂肪变性和炎症39。综上所述,表观遗传学改变可以通过多种机制影响胰岛素抵抗,从而在瘦型NAFLD的发病机制中发挥重要作用。

4 表观遗传学在瘦型NAFLD疾病进展及预后治疗中的作用

4.1 表观遗传学改变与肝纤维化和肝硬化的关系

表观遗传机制在肝纤维化的发生和发展中具有重要影响。研究表明,EZH2(组蛋白甲基转移酶)通过调节炎症因子和纤维化标志物的表达水平,加速肝纤维化的进程,提示EZH2抑制剂可能成为治疗NASH的一种创新疗法40。此外,ncRNA如miRNA和lncRNA(长链非编码RNA)也被发现参与了NAFLD的肝纤维化过程,通过调控基因表达和信号通路,影响肝细胞的增殖和凋亡。例如,miR-4488可以通过多种通路影响NAFLD的进展25。此外,Xin等41通过msRNA(miRNA-sized small RNA)测序发现埃希氏-志贺氏菌属在瘦型NAFLD的疾病进展中具有重要作用,msRNA 23487能够下调肝脏过氧化物酶体增殖物激活受体α表达,并有助于肝脏中的脂质积累。这些ncRNA通过调控与脂质代谢和炎症反应相关的基因表达来发挥作用。综上,表观遗传学改变在瘦型NAFLD的肝纤维化和肝硬化进展中起着重要作用,影响疾病进展。

4.2 表观遗传学在瘦型NAFLD患者预后评估中的潜在应用

特定的DNA甲基化模式和组蛋白修饰状态可以作为瘦型NAFLD进展和预后的生物标志物。如PEMT基因的变异Val175Met在瘦型NASH患者中更常见,可能作为NASH易感性的预后生物标志物42。另外,随着ncRNA在瘦型NAFLD中的调控作用逐渐被揭示,miRNA也被确定为无创诊断和疾病严重程度分级的可靠循环生物标志物43。这些表观遗传学标志物不仅可以帮助识别高风险患者,还可以用于监测治疗效果和疾病进展,从而为个体化治疗提供依据。

4.3 表观遗传学在瘦型NAFLD治疗中的应用前景

表观遗传调控机制是可逆的,并且具有动态调节的潜力,其改变可能作为未来临床的治疗策略。甾醇调节元件结合蛋白裂解激活蛋白(sterol regulatory element-binding protein cleavage-activating protein,SCAP)可以通过激活STING-NF-κB信号通路,调节巨噬细胞炎症反应,在瘦型NAFLD的发病机理中发挥重要作用。因此,巨噬细胞中SCAP的抑制策略,可能为瘦型NAFLD治疗开辟新的途径44

另有研究显示,肝纤维化和脂肪变性的严重程度与肌肉减少症有关45。而瘦型NAFLD患者肌肉减少症的患病率显著高于非瘦型NAFLD患者46。研究显示,miR-486在调节肌肉生长中发挥着重要作用,而规律的体育活动可以显著提升miR-486的表达水平47。综上,目前对于瘦型NAFLD的治疗依然是维持体育锻炼,其标准治疗包括饮食改变和身体活动,从而减少内脏肥胖。

5 小结与展望

本文综述了表观遗传学在瘦型NAFLD发展中的作用机制,通过分析瘦型NAFLD与非瘦型NAFLD在表观遗传学方面的差异,强调了表观遗传学改变在NAFLD发病、进展和治疗中的重要性。同时,介绍了表观遗传学标志物在瘦型NAFLD无创检测应用中展现出的显著优势,但目前研究尚且不足,特别是有关组蛋白变异方面,值得进一步探索。目前,对于瘦型NAFLD的表观遗传学治疗仍处于理论探索的早期阶段,但已显现出巨大潜力和优势,未来需要进一步研究表观遗传学在瘦型NAFLD中的具体作用机制及在临床上的检测,以便于开发针对表观遗传学改变的新型治疗策略。

参考文献

[1]

LIU MH, LIU ST, ZHANG LH, et al. Mechanism of ferroptosis in the formation of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. J Clin Hepatol, 2022, 38(5): 1152-1155. DOI: 10.3969/j.issn.1001-5256.2022.05.037 .

[2]

刘鸣昊, 刘素彤, 张丽慧, 铁死亡的发生机制及其在非酒精性脂肪性肝病/非酒精性脂肪性肝炎发生发展中的作用[J]. 临床肝胆病杂志, 2022, 38(5): 1152-1155. DOI: 10.3969/j.issn.1001-5256.2022.05.037 .

[3]

RONG L, ZOU JY, RAN W, et al. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD)[J]. Front Endocrinol (Lausanne), 2023, 13: 1087260. DOI: 10.3389/fendo.2022.1087260 .

[4]

RIAZI K, AZHARI H, CHARETTE JH, et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2022, 7(9): 851-861. DOI: 10.1016/S2468-1253(22)00165-0 .

[5]

YOUNOSSI ZM, STEPANOVA M, ONG J, et al. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States[J]. Clin Gastroenterol Hepatol, 2021, 19(3): 580-589. DOI: 10.1016/j.cgh.2020.05.064 .

[6]

HE SH, DAI L, ZHENG J, et al. Therapeutic effect of low-carbohydrate diet and lifestyle intervention on patients with lean nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2024, 40(5): 946-951. DOI: 10.12449/JCH240513 .

[7]

何诗华, 戴璐, 郑洁, 低碳水化合物饮食和生活方式干预对瘦型非酒精性脂肪性肝病患者的疗效观察[J]. 临床肝胆病杂志, 2024, 40(5): 946-951. DOI: 10.12449/JCH240513 .

[8]

GOLABI P, PAIK J, FUKUI N, et al. Patients with lean nonalcoholic fatty liver disease are metabolically abnormal and have a higher risk for mortality[J]. Clin Diabetes, 2019, 37(1): 65-72. DOI: 10.2337/cd18-0026 .

[9]

NABI O, LAPIDUS N, BOURSIER J, et al. Lean individuals with NAFLD have more severe liver disease and poorer clinical outcomes (NASH-CO Study)[J]. Hepatology, 2023, 78(1): 272-283. DOI: 10.1097/HEP.0000000000000329 .

[10]

SU YS, CHEN YW. AGA clinical practice update: diagnosis and management of nonalcoholic fatty liver disease in lean individuals: expert review[J]. Chin J Gastroenterol Hepatol, 2024, 33(3): 324-331. DOI: 10.3969/j.issn.1006-5709.2024.03.018 .

[11]

苏殷实, 陈源文. AGA临床实践指南更新: 瘦型NAFLD的诊断和管理(专家评议)[J]. 胃肠病学和肝病学杂志, 2024, 33(3): 324-331. DOI: 10.3969/j.issn.1006-5709.2024.03.018 .

[12]

FAHIM SM, CHOWDHURY MAB, ALAM S. Non-alcoholic fatty liver disease (NAFLD) among underweight adults[J]. Clin Nutr ESPEN, 2020, 38: 80-85. DOI: 10.1016/j.clnesp.2020.06.002 .

[13]

VILARINHO S, AJMERA V, ZHENG M, et al. Emerging role of genomic analysis in clinical evaluation of lean individuals with NAFLD[J]. Hepatology, 2021, 74(4): 2241-2250. DOI: 10.1002/hep.32047 .

[14]

XU RH, PAN JS, ZHOU WJ, et al. Recent advances in lean NAFLD[J]. Biomed Pharmacother, 2022, 153: 113331. DOI: 10.1016/j.biopha.2022.113331 .

[15]

CHAHAL D, SHARMA D, KESHAVARZI S, et al. Distinctive clinical and genetic features of lean vs overweight fatty liver disease using the UK Biobank[J]. Hepatol Int, 2022, 16(2): 325-336. DOI: 10.1007/s12072-022-10304-z .

[16]

ISAC T, ISAC S, RABABOC R, et al. Epigenetics in inflammatory liver diseases: A clinical perspective (Review)[J]. Exp Ther Med, 2022, 23(5): 366. DOI: 10.3892/etm.2022.11293 .

[17]

SHI YC, ZHANG HJ, HUANG SL, et al. Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials[J]. Signal Transduct Target Ther, 2022, 7(1): 200. DOI: 10.1038/s41392-022-01055-2 .

[18]

MOORE LD, LE T, FAN GP. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38. DOI: 10.1038/npp.2012.112 .

[19]

YANG ZH, DANG YQ, JI G. Role of epigenetics in transformation of inflammation into colorectal cancer[J]. World J Gastroenterol, 2019, 25(23): 2863-2877. DOI: 10.3748/wjg.v25.i23.2863 .

[20]

GONZÁLEZ-BENGTSSON A, ASADI A, GAO H, et al. Estrogen enhances the expression of the polyunsaturated fatty acid elongase Elovl2 via ERα in breast cancer cells[J]. PLoS One, 2016, 11(10): e0164241. DOI: 10.1371/journal.pone.0164241 .

[21]

LI X, WANG JQ, WANG LY, et al. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging[J]. Signal Transduct Target Ther, 2022, 7(1): 162. DOI: 10.1038/s41392-022-00964-6 .

[22]

PAUTER AM, OLSSON P, ASADI A, et al. Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice[J]. J Lipid Res, 2014, 55(4): 718-728. DOI: 10.1194/jlr.M046151 .

[23]

LI X, LI XD. Integrative chemical biology approaches to deciphering the histone code: A problem-driven journey[J]. Acc Chem Res, 2021, 54(19): 3734-3747. DOI: 10.1021/acs.accounts.1c00463 .

[24]

GIALLONGO S, LO RE O, LOCHMANOVÁ G, et al. Phosphorylation within intrinsic disordered region discriminates histone variant macroH2A1 splicing isoforms-macroH2A1.1 and macroH2A1.2[J]. Biology (Basel), 2021, 10(7): 659. DOI: 10.3390/biology10070659 .

[25]

BUZOVA D, MAUGERI A, LIGUORI A, et al. Circulating histone signature of human lean metabolic-associated fatty liver disease (MAFLD)[J]. Clin Epigenetics, 2020, 12(1): 126. DOI: 10.1186/s13148-020-00917-2 .

[26]

HOLOCH D, MOAZED D. RNA-mediated epigenetic regulation of gene expression[J]. Nat Rev Genet, 2015, 16(2): 71-84. DOI: 10.1038/nrg3863 .

[27]

AMERIKANOU C, PAPADA E, GIOXARI A, et al. Mastiha has efficacy in immune-mediated inflammatory diseases through a microRNA-155 Th17 dependent action[J]. Pharmacol Res, 2021, 171: 105753. DOI: 10.1016/j.phrs.2021.105753 .

[28]

SHEN N, TANG L, QIAN YF, et al. Serum miR-4488 as a potential biomarker of lean nonalcoholic fatty liver disease[J]. Ann Transl Med, 2023, 11(4): 173. DOI: 10.21037/atm-22-6620 .

[29]

DAI L, XU JJ, LIU BC, et al. Lingguizhugan Decoction, a Chinese herbal formula, improves insulin resistance in overweight/obese subjects with non-alcoholic fatty liver disease: A translational approach[J]. Front Med, 2022, 16(5): 745-759. DOI: 10.1007/s11684-021-0880-3 .

[30]

HYMEL E, FISHER KW, FARAZI PA. Differential methylation patterns in lean and obese non-alcoholic steatohepatitis-associated hepatocellular carcinoma[J]. BMC Cancer, 2022, 22(1): 1276. DOI: 10.1186/s12885-022-10389-7 .

[31]

LI DD, LIU Y, XUE L, et al. Up-regulation of microRNA-367 promotes liver steatosis through repressing TBL1 in obese mice[J]. Eur Rev Med Pharmacol Sci, 2017, 21(7): 1598-1603.

[32]

LI JY, XIN YG, LI JY, et al. Phosphatidylethanolamine N-methyltransferase: From functions to diseases[J]. Aging Dis, 2023, 14(3): 879-891. DOI: 10.14336/AD.2022.1025 .

[33]

BALE G, VISHNUBHOTLA RV, MITNALA S, et al. Whole-exome sequencing identifies a variant in phosphatidylethanolamine N-methyltransferase gene to be associated with lean-nonalcoholic fatty liver disease[J]. J Clin Exp Hepatol, 2019, 9(5): 561-568. DOI: 10.1016/j.jceh.2019.02.001 .

[34]

SEO JB, MOON HM, KIM WS, et al. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression[J]. Mol Cell Biol, 2004, 24(8): 3430-3444. DOI: 10.1128/MCB.24.8.3430-3444.2004 .

[35]

SHAMARDL HAMA, IBRAHIM NA, MERZEBAN DH, et al. Resveratrol and Dulaglutide ameliorate adiposity and liver dysfunction in rats with diet-induced metabolic syndrome: Role of SIRT-1/adipokines/PPARγ and IGF-1[J]. Daru, 2023, 31(1): 13-27. DOI: 10.1007/s40199-023-00458-y .

[36]

ZHOU B, JIA LJ, ZHANG ZJ, et al. The nuclear orphan receptor NR2F6 promotes hepatic steatosis through upregulation of fatty acid transporter CD36[J]. Adv Sci (Weinh), 2020, 7(21): 2002273. DOI: 10.1002/advs.202002273 .

[37]

CHEN MN, WONG CM. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis[J]. Mol Cancer, 2020, 19(1): 44. DOI: 10.1186/s12943-020-01172-y .

[38]

HOU J, ZHANG H, LIU J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma[J]. Mol Cancer, 2019, 18(1): 163. DOI: 10.1186/s12943-019-1082-3 .

[39]

HU Y, FENG Y, ZHANG LC, et al. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m6A on lipogenic mRNAs[J]. RNA Biol, 2020, 17(7): 930-942. DOI: 10.1080/15476286.2020.1736868 .

[40]

PENG SM, XIAO W, JU DP, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1[J]. Sci Transl Med, 2019, 11(488): eaau7116. DOI: 10.1126/scitranslmed.aau7116 .

[41]

XU F, GUO WR. The progress of epigenetics in the development and progression of non-alcoholic fatty liver disease[J]. Liver Res, 2020, 4(3): 118-123. DOI: 10.1016/j.livres.2020.08.003 .

[42]

BOLLINGER E, PELOQUIN M, LIBERA J, et al. BDK inhibition acts as a catabolic switch to mimic fasting and improve metabolism in mice[J]. Mol Metab, 2022, 66: 101611. DOI: 10.1016/j.molmet.2022.101611 .

[43]

LEE S, WOO DC, KANG J, et al. The role of the histone methyltransferase EZH2 in liver inflammation and fibrosis in STAM NASH mice[J]. Biology (Basel), 2020, 9(5): 93. DOI: 10.3390/biology9050093 .

[44]

XIN FZ, ZHAO ZH, LIU XL, et al. Escherichia fergusonii promotes nonobese nonalcoholic fatty liver disease by interfering with host hepatic lipid metabolism through its own msRNA 23487[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3): 827-841. DOI: 10.1016/j.jcmgh.2021.12.003 .

[45]

DONG H, WANG JJ, LI CM, et al. The phosphatidylethanolamine N-methyltransferase gene V175M single nucleotide polymorphism confers the susceptibility to NASH in Japanese population[J]. J Hepatol, 2007, 46(5): 915-920. DOI: 10.1016/j.jhep.2006.12.012 .

[46]

LIU CH, AMPUERO J, GIL-GÓMEZ A, et al. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. J Hepatol, 2018, 69(6): 1335-1348. DOI: 10.1016/j.jhep.2018.08.008 .

[47]

HUANG XY, YAO YC, HOU XL, et al. Macrophage SCAP contributes to metaflammation and lean NAFLD by activating STING-NF-κB signaling pathway[J]. Cell Mol Gastroenterol Hepatol, 2022, 14(1): 1-26. DOI: 10.1016/j.jcmgh.2022.03.006 .

[48]

PETTA S, CIMINNISI S, DI MARCO V, et al. Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2017, 45(4): 510-518. DOI: 10.1111/apt.13889 .

[49]

HIMOTO T, MIYATAKE K, MAEBA T, et al. Verification of the nutritional and dietary factors associated with skeletal muscle index in Japanese patients with nonalcoholic fatty liver disease[J]. Can J Gastroenterol Hepatol, 2020, 2020: 3576974. DOI: 10.1155/2020/3576974 .

[50]

NAIR VD, GE YC, LI SD, et al. Sedentary and trained older men have distinct circulating exosomal microRNA profiles at baseline and in response to acute exercise[J]. Front Physiol, 2020, 11: 605. DOI: 10.3389/fphys.2020.00605 .

基金资助

AI Summary AI Mindmap
PDF (829KB)

717

访问

0

被引

详细

导航
相关文章

AI思维导图

/