原发性胆汁性胆管炎合并干燥综合征的免疫机制及靶向治疗研究进展

董笑瀛 ,  翟永贞

临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1181 -1187.

PDF (677KB)
临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1181 -1187. DOI: 10.12449/JCH250627
综述

原发性胆汁性胆管炎合并干燥综合征的免疫机制及靶向治疗研究进展

作者信息 +

Research advances in immunopathogenesis and targeted therapeutic strategies for primary biliary cholangitis comorbid with Sjögrens syndrome

Author information +
文章历史 +
PDF (693K)

摘要

原发性胆汁性胆管炎(PBC)和干燥综合征(SS)均为上皮组织受累的自身免疫性疾病,且时常合并发生,可能存在共同的发病机制。目前,尚无针对PBC和SS的特异性靶向治疗方法,针对系统受累的治疗方法主要借鉴其他自身免疫性疾病的治疗方案。本文总结了PBC和SS发病机制中已经阐明的许多潜在的治疗靶点,指出PBC和SS共同的免疫病理机制中可能存在两种疾病目前和未来的靶向治疗选择,从而为开发新疗法提供有价值的思路。

Abstract

Primary biliary cholangitis (PBC) and Sjögren’s syndrome (SS) are both autoimmune disorders characterized by the involvement of epithelial tissue, and comorbidity of PBC and SS is often observed in clinical practice, suggesting that these two diseases may have common pathogeneses. Currently, there are still no specific targeted therapies for PBC and SS, and the therapeutic approach for systemic manifestations mainly relies on the treatment regimens for other autoimmune disorders. This article reviews the various potential therapeutic targets that have been clarified in the pathogenesis of PBC and SS and points out that targeted therapies for these two diseases can be developed based on the common immunopathological mechanism of PBC and SS, thereby providing valuable ideas for developing novel therapies.

关键词

原发性胆汁性胆管炎 / 干燥综合征 / 免疫调节 / 分子靶向治疗

Key words

Primary Biliary Cholangitis / Sjögren’s Syndrome / Immunomodulation / Molecular Targeted Therapy

引用本文

引用格式 ▾
董笑瀛,翟永贞. 原发性胆汁性胆管炎合并干燥综合征的免疫机制及靶向治疗研究进展[J]. 临床肝胆病杂志, 2025, 41(06): 1181-1187 DOI:10.12449/JCH250627

登录浏览全文

4963

注册一个新账户 忘记密码

原发性胆汁性胆管炎(primary biliary cholangitis,PBC)和干燥综合征(Sjögren’s syndrome,SS)均在中老年女性中多见1-2,两者发病时均以疲劳、乏力和瘙痒症状常见。PBC常合并其他自身免疫性疾病,其中SS是PBC最常伴发的疾病之一,患病率约为14.2%3。与其他许多自身免疫性疾病类似,PBC和SS由遗传、感染、环境等多种因素共同参与而导致,两者在遗传背景4和致病机制之间存在交叉,从而出现免疫重叠现象,两种疾病常同时发生。PBC与SS均为上皮组织受累的自身免疫性疾病,SS主要表现为外分泌腺上皮受累,而PBC主要累及肝内小胆管上皮。有研究认为,两种疾病存在共同的发病机制,即“自身免疫性上皮细胞炎症”,PBC是SS的胆道表型,而SS是PBC的外分泌表型5。上皮细胞在受到初始刺激后发生凋亡,胆管和外分泌腺上皮表达异常的自身抗原,激活异常的T/B淋巴细胞反应。CD4+和CD8+T淋巴细胞在胆管组织及唾液腺组织中异常浸润,引起组织损伤6。自身反应性B淋巴细胞异常激活、血清自身抗体的产生与免疫球蛋白(Ig)水平升高,这些指标变化均提示B淋巴细胞在PBC和SS的发病机制中也起到重要作用。
本文对PBC和SS免疫病理机制的最新发现进行总结,并就两种疾病目前和未来的靶向治疗选择进行讨论,以期为开发PBC和SS的新疗法提供有价值的思路。

1 靶向T淋巴细胞及相关细胞因子

胆管上皮细胞和唾液腺上皮细胞表面异常的自身抗原被呈递后,激活异常的T淋巴细胞与B淋巴细胞反应。PBC早期患者可以观察到门静脉区域大量的CD4+和CD8+T淋巴细胞浸润7-8。SS患者靶器官唇腺中主要浸润CD4+T淋巴细胞6。T淋巴细胞的多个亚型均可参与PBC和SS的发病。调节性T淋巴细胞(Treg)/辅助性T淋巴细胞17(Th17)免疫平衡轴作为CD4亚群的重要组成部分,Th17和Treg的动态平衡在维持机体免疫环境的稳定中起着关键作用9。研究发现在PBC和SS中,Th17与Treg的失衡引起异常免疫反应并导致组织损伤10-11。2020年我国的一项研究表明,SS合并PBC患者外周血Th17/Treg细胞比例显著高于单纯SS患者或健康人群12

目前针对Treg/Th17免疫平衡轴设计了多种药物,包括白细胞介素(IL)-17相关分子、转录因子和细胞内信号通路相关的靶向药物。然而,与类风湿性关节炎、系统性红斑狼疮、炎症性肠病以及银屑病等自身免疫性疾病相比,PBC和SS相关的靶向药物并不多见。尽管如此,既往药理学探索与临床试验为PBC合并SS治疗提供了方向。

低剂量IL-2可以增加Treg的数量,并抑制Th17的分化。大鼠模型实验表明,低剂量IL-2可以通过调节模型大鼠Th17和Treg细胞的失衡来减轻其PBC和SS的严重程度,说明IL-2对PBC合并SS具有潜在的治疗价值13-14。低剂量IL-2的有效性与安全性已在SS患者的临床研究中得到证实15,而对PBC患者的益处尚待研究。

IL-12/IL-23是由树突状细胞和巨噬细胞分泌的促炎因子,有着共同的亚基p40,位于信号转导的上游。IL-12刺激原始T淋巴细胞分化为Th1,IL-23促进Th17的存活和扩增。IL-12/IL-23介导的Th1/Th17信号通路在PBC发病中具有重要的治疗意义。有研究发现,IL-12p40缺失的小鼠会表现出更严重的门静脉炎症和胆管损伤16。一项孟德尔随机化研究提出,IL-12p40与SS存在关联,IL-12p40水平的降低可能对SS患者无益17。乌司奴单抗是一种抗IL-12/IL-23p40单克隆抗体,可用于多种自身免疫性疾病的治疗。在对熊去氧胆酸(ursodeoxycholic acid,UDCA)生化应答欠佳的PBC患者应用乌司奴单抗的临床试验中发现,虽然乌司奴单抗治疗28周后可以适度降低ALP,但所有患者均未达到主要终点18。因此乌司奴单抗治疗PBC合并SS是否有益尚待进一步研究。而Liaskou等19研究表明,PBC和SS患者的Treg对低剂量IL-12刺激的敏感性增加,这提示低剂量IL-12可能是治疗PBC合并SS的潜在方向。

Th17可以分泌多种细胞因子,其中IL-17是多种自身免疫性疾病的主要致病细胞因子。有研究发现,IL-17A及Th17相关细胞因子IL-6、TGF-β1均参与了肝硬化的进展20。但Chan等21研究表明,在模型小鼠中IL-17A与IL-17F不会增加肝脏炎症或纤维化,而IL-21的水平与肝脏炎症反应和肝纤维化正相关。在SS患者中,血清IL-17A水平仅在病程较长的患者中升高,且与临床和实验室特征无显著相关性;而血清IL-17F水平升高,并与IgG和IgM水平升高、抗核抗体和抗SSA(抗干燥综合征相关抗原A)抗体滴度升高以及补体C3和C4水平降低有关22。司库奇尤单抗(secukinumab)是一种人源性抗IL-17A单克隆抗体,目前已在临床上用于治疗银屑病。一项2021年的研究表明,银屑病患者应用司库奇尤单抗治疗后可以改善肝脏弹性参数,提示司库奇尤单抗可能具有抗纤维化作用23。靶向IL-17A治疗可能成为预防PBC肝硬化的新策略。目前双特异性IL-17A/F抑制剂Bimekizumab已用于治疗中重度斑块状银屑病24,是否对PBC合并SS有效有待进一步研究。

AMPK是治疗代谢紊乱相关疾病的潜在靶点。最近有研究发现,AMPK能够维持叉头框蛋白P3(FoxP3)的稳定性和Treg的免疫抑制功能25。Zhu等26研究报道,AMPKα1整体敲除的小鼠会发生免疫介导的肝损伤,AMPKα1缺乏会显著损害Treg的抑制功能;此外,研究还发现PBC患者Treg中AMPK磷酸化水平降低,Treg数量减少。Kim等27研究也证明,在SS小鼠模型中,AMPK激活剂二甲双胍降低了唾液腺中的IL-6、TNF-α和IL-17的mRNA水平,起到调节Th17和Treg动态平衡的作用,并减轻唾液腺炎症,恢复唾液流速。因此,AMPK通路可能是治疗PBC合并SS的潜在靶点。

细胞毒性T淋巴细胞相关抗原4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)是由CTLA-4基因编码的T淋巴细胞表面跨膜蛋白,与抗原递呈细胞表面的协同刺激分子B7结合后抑制T淋巴细胞活化。阿巴西普(CTLA-4 Ig)是一种选择性T淋巴细胞共刺激调节剂,选择性靶向CD80/CD86共刺激通路。在PBC小鼠模型的研究中,诱导自身免疫性胆管炎之前和之后分别使用阿巴西普均可减少肝脏中T淋巴细胞浸润和胆管细胞损伤,提示阿巴西普可以作为预防药物抑制自身免疫性胆管炎和抗线粒体抗体(AMA)的产生28。然而在临床试验中,经阿巴西普治疗后,PBC患者的ALP、ALT、总蛋白、白蛋白、Ig和肝脏硬度并没有显著改变29。多项小型开放性研究均表明阿巴西普对SS的疗效显著,在ASAP Ⅱ期研究中,阿巴西普可以改善早期SS患者的疾病活动度、实验室参数及疲劳症状30-32。基于开放性研究的可喜成果,后续进行的ASAP Ⅲ期研究分为两个阶段。其中第一个阶段为阿巴西普治疗从基线到第24周的大型随机对照试验研究,主要终点是阿巴西普和安慰剂组之间干燥综合征疾病活动指数(European League Against Rheumatism SS Disease Activity Index,ESSDAI)的显著差异;其结果令人失望,虽然阿巴西普治疗影响了SS活动相关的多种生物标志物,但最终并没有达到主要试验终点33。第二个阶段为阿巴西普治疗从基线到第48周,患者干眼症状和结局均有所改善。由于ESSDAI作为主要研究终点的公认缺陷,试验额外采用干燥综合征相关复合终点(composite of relevant endpoints for sjögren syndrome,CRESS),73%的患者在第48周时达到CRESS,50%患者达到低疾病活动度34。尽管阿巴西普治疗PBC患者的数据不够充分,但阿巴西普及CTLA-4靶向治疗仍可能成为PBC合并SS患者的一种选择。

2 靶向B淋巴细胞及相关细胞因子

在PBC和SS患者中,血清自身抗体和高IgM水平的存在提示B淋巴细胞在两种疾病的发病机制中同样处于重要地位。B淋巴细胞活化因子(B cell-activating factor,BAFF)水平在PBC和SS中均升高,作为调节免疫应答的TNF超家族的一员,BAFF在B淋巴细胞的发育和选择中具有重要作用,并可以作为自身免疫性疾病中提示免疫失调的潜在生物标志物35。在SS患者中,BAFF水平与抗SSA/Ro、抗SSB/La水平呈正相关36-37。在PBC患者中,BAFF水平与AMA滴度、循环浆母细胞频率之间存在正相关38

B淋巴细胞靶向疗法是一种治疗PBC合并SS的合理治疗策略。B淋巴细胞靶向治疗药物中目前研究最多的是利妥昔单抗,利妥昔单抗是一种选择性消耗B淋巴细胞的抗CD20单克隆抗体。在UDCA治疗应答欠佳的PBC患者中,利妥昔单抗治疗可以改善ALP水平,降低血清AMA滴度,增加Treg数量,调节细胞因子的产生39。一项Ⅱ期随机对照试验证明了利妥昔单抗在临床应用中的安全性,但并没有改善疲劳症状40。欧洲抗风湿病联盟推荐对严重的、难治性SS应用利妥昔单抗治疗,其中SS合并冷球蛋白血管炎为最佳适应证41。利妥昔单抗改善唾液分泌以及增加唾液流量的效果已在多项随机双盲临床试验中得到证实42。但也有研究表明,利妥昔单抗不能改善SS的症状43。仅有1例应用利妥昔单抗治疗PBC合并SS的病例报告,该患者应用利妥昔单抗治疗1年后胆汁淤积再次出现,并与B淋巴细胞再增殖相关。但由于该病例同时伴有类风湿关节炎,且并未评估SS治疗后情况,故利妥昔单抗治疗PBC合并SS的疗效仍不确定44

贝利尤单抗是一种靶向B淋巴细胞的抗BAFF单克隆抗体。一项纳入了30例SS患者的BELISS开放标签Ⅱ期临床试验报道,在经过28周的贝利尤单抗(10 mg/kg,第0、2、4周给药,以后每4周给药1次)方案治疗后,18例患者达到了5个主要终点中的2个45。2023年的一组病例报告表明,在PBC患者中应用贝利尤单抗可使IgM水平正常化,但不能减轻肝脏炎症与胆汁淤积46,这意味着在贝利尤单抗治疗期间,IgM和疾病活动并不同步。但其中1例伴有SS的PBC患者的疲劳症状有所改善,这与BELISS开放标签Ⅱ期临床试验得出的结论类似。

BAFF受体在短寿命外周自身反应性浆细胞上不表达,而抗CD20治疗在消耗外周短寿命自身反应性浆细胞中有效。Zhang等47提出针对B淋巴细胞发育的两个主要阶段,即长寿命记忆B淋巴细胞和短寿命外周自身反应性浆细胞的抗BAFF和抗CD20的双重B淋巴细胞靶向治疗策略,对ARE-Del小鼠(一种常用于研究人类PBC的基因修饰小鼠模型)给予抗BAFF和抗CD20单克隆抗体,与两种单药治疗的小鼠相比,双重B淋巴细胞靶向治疗在降低AMA、总IgM和IgG的血清水平方面更有效,并且减少了外周血和组织中的B淋巴细胞,肝脏病理学明显改善,汇管区浸润的B淋巴细胞减少,胆管损伤与门静脉炎症明显减轻,提示抗BAFF和抗CD20联合治疗PBC患者的潜在效果。与单一疗法相比,抗BAFF和抗CD20联合治疗在SS患者中也有良好表现。一项Ⅱ期双盲研究(NCT02631538)正在进行中,为期68周的贝利尤单抗联合利妥昔单抗治疗与随访后,可以观察到小唾液腺CD20+B淋巴细胞几乎完全耗竭,而外周CD19+B淋巴细胞耗竭更明显且更持久48。抗BAFF和抗CD20的双重B淋巴细胞靶向治疗可能是未来PBC合并SS患者治疗方向。

BAFF和APRIL(一种增殖诱导配体,也称为CD256或TNFSF13)在B淋巴细胞发育和成熟过程中发挥重要作用。泰它西普(telitacicept)是一个TACI-Fc抗体融合蛋白药物分子,通过同时抑制BAFF和APRIL两个细胞因子的过度表达,阻碍B淋巴细胞的成熟和存活,目前用于多种自身免疫性疾病的治疗49。在2024年发表的一项随机、双盲、安慰剂对照的Ⅱ期临床试验中,SS患者接受泰它西普治疗24周后,ESSDAI评分显著降低,血清Ig水平显著下降,疲劳症状减轻50。目前尚无泰它西普治疗PBC患者的数据,但可以推测其对于治疗PBC合并SS患者具有潜在应用前景。

3 靶向信号通路

3.1 JAK/STAT信号通路

JAK/STAT信号通路参与先天性免疫与适应性免疫,并对抑制炎症和免疫反应至关重要,其在许多自身免疫性疾病中的作用已被证实。JAK抑制剂托法替尼(tofacitinib)、巴瑞替尼(baricitinib)、奥拉替尼(oclacitinib)、非戈替尼(filgotinib)和乌帕替尼(upadacitinib)均已应用于自身免疫性疾病的治疗。一项对UDCA生化应答不佳或不能服用UDCA的PBC患者的临床试验评估了巴瑞替尼的疗效和安全性(NCT03742973),但因入组人数较少,研究提前结束51。一项体外研究报道巴瑞替尼可以通过在人唾液腺导管细胞中抑制JAK/STAT信号通路,下调IFN-γ诱导的CXC趋化因子配体10(CXCL10)的表达与趋化作用,从而防治腺体组织的破坏,表明其存在治疗SS的潜力52。2023年一项旨在评估巴瑞替尼对SS的临床疗效和安全性的随机对照研究(NCT05016297)纳入多中心的87例患者,分别接受巴瑞替尼+羟氯喹与单独使用羟氯喹治疗,结果表明巴瑞替尼能够显著改善患者的ESSDAI评分53。此外,非戈替尼治疗SS的Ⅱ期研究也在进行当中(NCT03100942)54。因此,靶向JAK/STAT信号通路可能成为PBC合并SS的未来治疗方向。

3.2 TLR4/MyD88/NF-κB信号通路

TLR4/MyD88/NF-κB信号通路参与免疫和炎症反应的发生。有研究报道,PBC和SS均存在TLR4/MyD88/NF-κB信号通路的激活55-56。NF-κB调节多种细胞因子,过氧化物酶体增殖物激活受体α(PPARα)作为受配体活化的转录因子,是核激素受体超家族成员,可以干扰NF-κB信号传导。非诺贝特是一种PPARα激动剂,有研究报道,非诺贝特通过抑制NF-κB信号通路上的NF-κB p50和p65蛋白表达,降低多种促炎细胞因子的水平,这可能是其在PBC中发挥抗炎作用的原因57。目前多项研究证明,非诺贝特与苯扎贝特作为PBC的二线治疗,与UDCA联合使用不仅可以改善GLOBE和UK-PBC评分,还可以改善早期PBC患者的长期预后58-59。2022年一项研究报道,非诺贝特在自身免疫性干眼症小鼠模型实验中,通过激活PPARα/LXR-β信号传导来调节Th1/Th17/Treg反应,有效减轻了模型小鼠泪腺炎症,表明非诺贝特可能是改善SS干眼症状的一种新型药物60。既往研究报道,当PBC与SS同时发生时,合并SS的PBC多在早期阶段(肝组织病理学Ⅰ~Ⅱ期)61。因此,推测PBC合并SS的患者联合使用UDCA与PPARα激动剂能够减轻炎症,缓解症状,并改善患者的长期预后。

4 小结与展望

UDCA仍是目前治疗PBC的首选药物。SS的治疗主要包括缓解局部症状(替代治疗和促进腺体分泌)和全身治疗(糖皮质激素、免疫抑制剂、生物制剂等)。国家风湿数据中心关于中国SS患者真实世界用药数据显示,临床应用最多的药物为激素与羟氯喹。对于PBC合并SS患者,有研究报道PBC合并SS不影响PBC患者对UDCA治疗的反应性与UDCA治疗后PBC患者的预后62。这表明,PBC合并SS以肝脏受累为主要表现时,首选药物仍为UDCA。PBC合并SS使用免疫抑制剂时,建议选择硫唑嘌呤、吗替麦考酚酯等肝损伤发生率较低的药物,同时监测肝功能变化。2022年的一项研究发现,羟氯喹可以改善自身免疫性肝炎小鼠的肝脏病理损伤和炎症浸润63,UDCA联合羟氯喹治疗PBC合并SS能否改善患者预后尚需进一步临床验证。

尽管UDCA是全球PBC的一线治疗药物,但其治疗并不足以阻止疾病进展至肝功能失代偿期,终末期PBC唯一的治疗方法为肝移植。PBC合并SS患者往往处于疾病早期,尽早应用生物制剂治疗或许可以减缓疾病进展和预防肝纤维化。由于Th17和B淋巴细胞在SS与PBC的发病机制中发挥重要作用,针对Th17和B淋巴细胞相关信号通路和分子的靶向治疗越来越受到关注。当前进行了广泛的临床前研究和临床试验,但目前尚没有一种单一的药物或单一的机制可以完全有效地阻止疾病进展(表1)。其中对于早期PBC合并SS患者,UDCA联合羟氯喹治疗与UDCA联合非诺贝特治疗可能成为PBC合并SS的未来治疗方向,存在严重系统受累的PBC合并SS患者,应用抗BAFF和抗CD20联合治疗可能优于单一抗CD20治疗。近年来,关于PBC和SS的靶向治疗均有开展新的临床试验,但其有效性及安全性仍需进一步验证。

参考文献

[1]

LIU ZC, WANG ZL, ZHENG JR, et al. Prevalence of primary biliary cholangitis in the Chinese general population and its influencing factors: A systematic review[J]. J Clin Hepatol, 2023, 39(2): 325-332. DOI: 10.3969/j.issn.1001-5256.2023.02.011 .

[2]

刘智成, 王资隆, 郑佳睿, 我国一般人群原发性胆汁性胆管炎患病率及其影响因素的系统综述[J]. 临床肝胆病杂志, 2023, 39(2): 325-332. DOI: 10.3969/j.issn.1001-5256.2023.02.011 .

[3]

RAMOS-CASALS M, BRITO-ZERÓN P, KOSTOV B, et al. Google-driven search for big data in autoimmune geoepidemiology: Analysis of 394, 827 patients with systemic autoimmune diseases[J]. Autoimmun Rev, 2015, 14(8): 670-679. DOI: 10.1016/j.autrev.2015.03.008 .

[4]

CHEN S, LI MQ, DUAN WJ, et al. Concomitant extrahepatic autoimmune diseases do not compromise the long-term outcomes of primary biliary cholangitis[J]. Hepatobiliary Pancreat Dis Int, 2022, 21(6): 577-582. DOI: 10.1016/j.hbpd.2022.05.009 .

[5]

SUN Y, ZHANG WC, LI BS, et al. The coexistence of Sjögren’s syndrome and primary biliary cirrhosis: A comprehensive review[J]. Clin Rev Allergy Immunol, 2015, 48(2-3): 301-315. DOI: 10.1007/s12016-015-8471-1 .

[6]

SELMI C, MERONI PL, GERSHWIN ME. Primary biliary cirrhosis and Sjögren’s syndrome: Autoimmune epithelitis[J]. J Autoimmun, 2012, 39(1-2): 34-42. DOI: 10.1016/j.jaut.2011.11.005 .

[7]

ADAMSON TC 3rd, RI FOX, FRISMAN DM, et al. Immunohistologic analysis of lymphoid infiltrates in primary Sjogren’s syndrome using monoclonal antibodies[J]. J Immunol, 1983, 130(1): 203-208.

[8]

SHIMODA S, MIYAKAWA H, NAKAMURA M, et al. CD4 T-cell autoreactivity to the mitochondrial autoantigen PDC-E2 in AMA-negative primary biliary cirrhosis[J]. J Autoimmun, 2008, 31(2): 110-115. DOI: 10.1016/j.jaut.2008.05.003 .

[9]

KITA H, LIAN ZX, van de WATER J, et al. Identification of HLA-A2-restricted CD8+ cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells[J]. J Exp Med, 2002, 195(1): 113-123. DOI: 10.1084/jem.20010956 .

[10]

QIN Y, GAO C, LUO J. Metabolism characteristics of Th17 and regulatory T cells in autoimmune diseases[J]. Front Immunol, 2022, 13: 828191. DOI: 10.3389/fimmu.2022.828191 .

[11]

LIN X, RUI K, DENG J, et al. Th17 cells play a critical role in the development of experimental Sjögren’s syndrome[J]. Ann Rheum Dis, 2015, 74(6): 1302-1310. DOI: 10.1136/annrheumdis-2013-204584 .

[12]

RONG G, ZHOU Y, XIONG Y, et al. Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: The serum cytokine profile and peripheral cell population[J]. Clin Exp Immunol, 2009, 156(2): 217-225. DOI: 10.1111/j.1365-2249.2009.03898.x .

[13]

HUAN W, SHI LP. Percentage of Th17/Treg cells in peripheral blood of patients with Sjogren’s syndrome and primary biliary cirrhosis and their clinical characteristics[J]. Chin Hepatol, 2020, 25(2): 155-157. DOI: 10.14000/j.cnki.issn.1008-1704.2020.02.019 .

[14]

郇稳, 史丽璞. 干燥综合征合并原发性胆汁性肝硬化患者的外周血Th17/Treg细胞百分比及临床特征[J]. 肝脏, 2020, 25(2): 155-157. DOI: 10.14000/j.cnki.issn.1008-1704.2020.02.019 .

[15]

WANG YF, FENG RL, CHENG G, et al. Low dose interleukin-2 ameliorates Sjögren’s syndrome in a murine model[J]. Front Med (Lausanne), 2022, 9: 887354. DOI: 10.3389/fmed.2022.887354 .

[16]

WANG ZL, LIU ZC, ZHENG JR, et al. The effects of low-dose IL-2 on Th17/Treg cell imbalance in primary biliary cholangitis mouse models[J]. BMC Gastroenterol, 2024, 24(1): 87. DOI: 10.1186/s12876-024-03176-0 .

[17]

HE J, CHEN JL, MIAO M, et al. Efficacy and safety of low-dose interleukin 2 for primary sjögren syndrome: A randomized clinical trial[J]. JAMA Netw Open, 2022, 5(11): e2241451. DOI: 10.1001/jamanetworkopen.2022.41451 .

[18]

YAO Y, YANG W, YANG YQ, et al. Distinct from its canonical effects, deletion of IL-12p40 induces cholangitis and fibrosis in interleukin-2Rα (-/-) mice[J]. J Autoimmun, 2014, 51: 99-108. DOI: 10.1016/j.jaut.2014.02.009 .

[19]

ZUCKERMAN BP, YANG ZJ, WARWICK A, et al. Association between interleukin-12 p40 subunit and risk of primary Sjögren’s syndrome: A Mendelian randomization study[J]. Rheumatology (Oxford), 2024: keae475. DOI: 10.1093/rheumatology/keae475 .

[20]

HIRSCHFIELD GM, ERIC GERSHWIN M, STRAUSS R, et al. Ustekinumab for patients with primary biliary cholangitis who have an inadequate response to ursodeoxycholic acid: A proof-of-concept study[J]. Hepatology, 2016, 64(1): 189-199. DOI: 10.1002/hep.28359 .

[21]

LIASKOU E, PATEL SR, WEBB G, et al. Increased sensitivity of Treg cells from patients with PBC to low dose IL-12 drives their differentiation into IFN-γ secreting cells[J]. J Autoimmun, 2018, 94: 143-155. DOI: 10.1016/j.jaut.2018.07.020 .

[22]

SUN QN, WANG Q, FENG N, et al. The expression and clinical significance of serum IL-17 in patients with primary biliary cirrhosis[J]. Ann Transl Med, 2019, 7(16): 389. DOI: 10.21037/atm.2019.07.100 .

[23]

CHAN CW, CHEN HW, WANG YW, et al. IL-21, not IL-17A, exacerbates murine primary biliary cholangitis[J]. Clin Exp Immunol, 2024, 215(2): 137-147. DOI: 10.1093/cei/uxad107 .

[24]

GAN YZ, ZHAO XZ, HE J, et al. Increased interleukin-17F is associated with elevated autoantibody levels and more clinically relevant than interleukin-17A in primary Sjögren’s syndrome[J]. J Immunol Res, 2017, 2017: 4768408. DOI: 10.1155/2017/4768408 .

[25]

MAGDALENO-TAPIAL J, LÓPEZ-MARTÍ C, ORTIZ-SALVADOR JM, et al. Can secukinumab improve liver fibrosis? A pilot prospective study of 10 psoriatic patients[J]. Dermatol Ther, 2021, 34(5): e15065. DOI: 10.1111/dth.15065 .

[26]

GREER ME, MORAN SK, FELDMAN SR. Bimekizumab-bkzx for the treatment of plaque psoriasis: A drug review[J]. Ann Pharmacother, 2024: 10600280241288553. DOI: 10.1177/10600280241288553 .

[27]

TIMILSHINA M, YOU ZW, LACHER SM, et al. Activation of mevalonate pathway via LKB1 is essential for stability of Treg cells[J]. Cell Rep, 2019, 27(10): 2948-2961. e7. DOI: 10.1016/j.celrep.2019.05.020 .

[28]

ZHU HP, LIU ZY, AN JQ, et al. Activation of AMPKα1 is essential for regulatory T cell function and autoimmune liver disease prevention[J]. Cell Mol Immunol, 2021, 18(12): 2609-2617. DOI: 10.1038/s41423-021-00790-w .

[29]

KIM JW, KIM SM, PARK JS, et al. Metformin improves salivary gland inflammation and hypofunction in murine Sjögren’s syndrome[J]. Arthritis Res Ther, 2019, 21(1): 136. DOI: 10.1186/s13075-019-1904-0 .

[30]

DHIRAPONG A, YANG GX, NADLER S, et al. Therapeutic effect of cytotoxic T lymphocyte antigen 4/immunoglobulin on a murine model of primary biliary cirrhosis[J]. Hepatology, 2013, 57(2): 708-715. DOI: 10.1002/hep.26067 .

[31]

BOWLUS CL, YANG GX, LIU CH, et al. Therapeutic trials of biologics in primary biliary cholangitis: An open label study of abatacept and review of the literature[J]. J Autoimmun, 2019, 101: 26-34. DOI: 10.1016/j.jaut.2019.04.005 .

[32]

ADLER S, KÖRNER M, FÖRGER F, et al. Evaluation of histologic, serologic, and clinical changes in response to abatacept treatment of primary Sjögren’s syndrome: A pilot study[J]. Arthritis Care Res (Hoboken), 2013, 65(11): 1862-1868. DOI: 10.1002/acr.22052 .

[33]

MEINERS PM, VISSINK A, KROESE FM, et al. Abatacept treatment reduces disease activity in early primary Sjögren’s syndrome (open-label proof of concept ASAP study)[J]. Ann Rheum Dis, 2014, 73(7): 1393-1396. DOI: 10.1136/annrheumdis-2013-204653 .

[34]

MACHADO AC, DOS SANTOS LC, FIDELIX T, et al. Effectiveness and safety of abatacept for the treatment of patients with primary Sjögren’s syndrome[J]. Clin Rheumatol, 2020, 39(1): 243-248. DOI: 10.1007/s10067-019-04724-w .

[35]

van NIMWEGEN JF, MOSSEL E, van ZUIDEN GS, et al. Abatacept treatment for patients with early active primary Sjögren’s syndrome: A single-centre, randomised, double-blind, placebo-controlled, phase 3 trial (ASAP-III study)[J]. Lancet Rheumatol, 2020, 2(3): e153-e163. DOI: 10.1016/S2665-9913(19)30160-2 .

[36]

de WOLFF L, van NIMWEGEN JF, MOSSEL E, et al. Long-term abatacept treatment for 48 weeks in patients with primary Sjögren’s syndrome: The open-label extension phase of the ASAP-III trial[J]. Semin Arthritis Rheum, 2022, 53: 151955. DOI: 10.1016/j.semarthrit.2022.151955 .

[37]

OIKAWA T, TAKAHASHI H, ISHIKAWA T, et al. Intrahepatic expression of the co-stimulatory molecules programmed death-1, and its ligands in autoimmune liver disease[J]. Pathol Int, 2007, 57(8): 485-492. DOI: 10.1111/j.1440-1827.2007.02129.x .

[38]

MARIETTE X, ROUX S, ZHANG J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome[J]. Ann Rheum Dis, 2003, 62(2): 168-171. DOI: 10.1136/ard.62.2.168 .

[39]

ZHOU HM, YANG J, TIAN J, et al. CD8+ T lymphocytes: Crucial players in Sjögren’s syndrome[J]. Front Immunol, 2021, 11: 602823. DOI: 10.3389/fimmu.2020.602823 .

[40]

TANG LB, ZHONG RH, HE XQ, et al. Evidence for the association between IgG-antimitochondrial antibody and biochemical response to ursodeoxycholic acid treatment in primary biliary cholangitis[J]. J Gastroenterol Hepatol, 2017, 32(3): 659-666. DOI: 10.1111/jgh.13534 .

[41]

MYERS RP, SWAIN MG, LEE SS, et al. B-cell depletion with rituximab in patients with primary biliary cirrhosis refractory to ursodeoxycholic acid[J]. Am J Gastroenterol, 2013, 108(6): 933-941. DOI: 10.1038/ajg.2013.51 .

[42]

KHANNA A, JOPSON L, HOWEL D, et al. Rituximab is ineffective for treatment of fatigue in primary biliary cholangitis: A phase 2 randomized controlled trial[J]. Hepatology, 2019, 70(5): 1646-1657. DOI: 10.1002/hep.30099 .

[43]

RAMOS-CASALS M, BRITO-ZERÓN P, BOMBARDIERI S, et al. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies[J]. Ann Rheum Dis, 2020, 79(1): 3-18. DOI: 10.1136/annrheumdis-2019-216114 .

[44]

CHU LL, CUI KP, POPE JE. Meta-analysis of treatment for primary Sjögren’s syndrome[J]. Arthritis Care Res (Hoboken), 2020, 72(7): 1011-1021. DOI: 10.1002/acr.23917 .

[45]

BOWMAN SJ, EVERETT CC, O’DWYER JL, et al. Randomized controlled trial of rituximab and cost-effectiveness analysis in treating fatigue and oral dryness in primary Sjögren’s syndrome[J]. Arthritis Rheumatol, 2017, 69(7): 1440-1450. DOI: 10.1002/art.40093 .

[46]

POLIDO-PEREIRA J, RODRIGUES AM, CANHÃO H, et al. Primary biliary cirrhosis in a rheumatoid arthritis patient treated with rituximab, a case-based review[J]. Clin Rheumatol, 2012, 31(2): 385-389. DOI: 10.1007/s10067-011-1879-y .

[47]

MARIETTE X, SEROR R, QUARTUCCIO L, et al. Efficacy and safety of belimumab in primary Sjögren’s syndrome: Results of the BELISS open-label phase II study[J]. Ann Rheum Dis, 2015, 74(3): 526-531. DOI: 10.1136/annrheumdis-2013-203991 .

[48]

KOLEV M, SARBU AC, MÖLLER B, et al. Belimumab treatment in autoimmune hepatitis and primary biliary cholangitis - a case series[J]. J Transl Autoimmun, 2023, 6: 100189. DOI: 10.1016/j.jtauto.2023.100189 .

[49]

ZHANG WC, SHAO TH, LEUNG PSC, et al. Dual B-cell targeting therapy ameliorates autoimmune cholangitis[J]. J Autoimmun, 2022, 132: 102897. DOI: 10.1016/j.jaut.2022.102897 .

[50]

MARIETTE X, BARONE F, BALDINI C, et al. A randomized, phase II study of sequential belimumab and rituximab in primary Sjögren’s syndrome[J]. JCI Insight, 2022, 7(23): e163030. DOI: 10.1172/jci.insight.163030 .

[51]

ZENG LT, YANG KL, WU Y, et al. Telitacicept: A novel horizon in targeting autoimmunity and rheumatic diseases[J]. J Autoimmun, 2024, 148: 103291. DOI: 10.1016/j.jaut.2024.103291 .

[52]

XU D, FANG JM, ZHANG SZ, et al. Efficacy and safety of telitacicept in primary Sjögren’s syndrome: A randomized, double-blind, placebo-controlled, phase 2 trial[J]. Rheumatology (Oxford), 2024, 63(3): 698-705. DOI: 10.1093/rheumatology/kead265 .

[53]

GORDON SC, TRUDEAU S, REGEV A, et al. Baricitinib and primary biliary cholangitis[J]. J Transl Autoimmun, 2021, 4: 100107. DOI: 10.1016/j.jtauto.2021.100107 .

[54]

AOTA K, YAMANOI T, KANI K, et al. Inhibition of JAK-STAT signaling by baricitinib reduces interferon-γ-induced CXCL10 production in human salivary gland ductal cells[J]. Inflammation, 2021, 44(1): 206-216. DOI: 10.1007/s10753-020-01322-w .

[55]

BAI W, YANG F, XU HJ, et al. A multi-center, open-label, randomized study to explore efficacy and safety of baricitinib in active primary Sjogren’s syndrome patients[J]. Trials, 2023, 24(1): 112. DOI: 10.1186/s13063-023-07087-5 .

[56]

PRICE E, BOMBARDIERI M, KIVITZ A, et al. Safety and efficacy of filgotinib, lanraplenib and tirabrutinib in Sjögren’s syndrome: A randomized, phase 2, double-blind, placebo-controlled study[J]. Rheumatology (Oxford), 2022, 61(12): 4797-4808. DOI: 10.1093/rheumatology/keac167 .

[57]

LI Y, XI YH, TAO GH, et al. Sirtuin 1 activation alleviates primary biliary cholangitis via the blocking of the NF-κB signaling pathway[J]. Int Immunopharmacol, 2020, 83: 106386. DOI: 10.1016/j.intimp.2020.106386 .

[58]

NOCTURNE G, MARIETTE X. Advances in understanding the pathogenesis of primary Sjögren’s syndrome[J]. Nat Rev Rheumatol, 2013, 9(9): 544-556. DOI: 10.1038/nrrheum.2013.110 .

[59]

GALLUCCI GM, ALSUWAYT B, AUCLAIR AM, et al. Fenofibrate downregulates NF-κB signaling to inhibit pro-inflammatory cytokine secretion in human THP-1 macrophages and during primary biliary cholangitis[J]. Inflammation, 2022, 45(6): 2570-2581. DOI: 10.1007/s10753-022-01713-1 .

[60]

CHUNG SW, LEE JH, KIM MA, et al. Additional fibrate treatment in UDCA-refractory PBC patients[J]. Liver Int, 2019, 39(9): 1776-1785. DOI: 10.1111/liv.14165 .

[61]

KHAKOO NS, SULTAN S, REYNOLDS JM, et al. Efficacy and safety of bezafibrate alone or in combination with ursodeoxycholic acid in primary biliary cholangitis: Systematic review and meta-analysis[J]. Dig Dis Sci, 2023, 68(4): 1559-1573. DOI: 10.1007/s10620-022-07704-4 .

[62]

GUO XY, DANG WY, LI N, et al. PPAR-α agonist fenofibrate ameliorates Sjögren syndrome-like dacryoadenitis by modulating Th1/Th17 and Treg cell responses in NOD mice[J]. Invest Ophthalmol Vis Sci, 2022, 63(6): 12. DOI: 10.1167/iovs.63.6.12 .

[63]

UDDENFELDT P, DANIELSSON A, FORSSELL A, et al. Features of Sjögren’s syndrome in patients with primary biliary cirrhosis[J]. J Intern Med, 1991, 230(5): 443-448. DOI: 10.1111/j.1365-2796.1991.tb00470.x .

[64]

NI P, MEN RT, SHEN MY, et al. Concomitant Sjögren’s syndrome was not associated with a poorer response or outcomes in ursodeoxycholic acid-treated patients with primary biliary cholangitis[J]. Can J Gastroenterol Hepatol, 2019, 2019: 7396870. DOI: 10.1155/2019/7396870 .

[65]

JIN C, GAO BB, ZHOU WJ, et al. Hydroxychloroquine attenuates autoimmune hepatitis by suppressing the interaction of GRK2 with PI3K in T lymphocytes[J]. Front Pharmacol, 2022, 13: 972397. DOI: 10.3389/fphar.2022.972397 .

基金资助

AI Summary AI Mindmap
PDF (677KB)

1121

访问

0

被引

详细

导航
相关文章

AI思维导图

/