中药调控肿瘤相关巨噬细胞对肝细胞癌的治疗作用与机制

唐怡 ,  王国泰 ,  蒋雨涵 ,  吴晨旸

临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1199 -1206.

PDF (928KB)
临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1199 -1206. DOI: 10.12449/JCH250630
综述

中药调控肿瘤相关巨噬细胞对肝细胞癌的治疗作用与机制

作者信息 +

Therapeutic effect of traditional Chinese medicine in liver cancer by regulating tumor-associated macrophages and its mechanism

Author information +
文章历史 +
PDF (949K)

摘要

肝细胞癌(HCC)作为全球性高发病率、高病死率的疾病,其发生发展与肿瘤微环境和肿瘤相关巨噬细胞(TAM)的相互作用密切相关。TAM在HCC免疫抑制、免疫逃逸、细胞增殖、侵袭和转移以及药物耐受性方面发挥着重要作用。中药凭借其独特的治疗理念和方法,在调控TAM、改善HCC预后方面展现出巨大潜力。本文综述了中药调控TAM在HCC治疗中的作用及其分子机制,探讨了TAM在HCC进展中的关键作用,并基于中医理论,系统分析了中药成分对TAM募集、极化、活性及相关因子表达的影响。当前研究发现,中药可通过调节TAM的极化状态,促进M1型抗肿瘤巨噬细胞的形成,抑制M2型肿瘤巨噬细胞的活性,从而在抑制HCC细胞增殖、促进凋亡、抗血管生成和增强免疫应答等方面发挥作用。此外,本文还总结了中药单体、复方及新型制剂在HCC治疗中的分子靶点和作用机制,如通过抑制TAM分泌细胞因子、调节信号通路、影响代谢途径等,为中药在HCC治疗中的应用提供了科学依据,同时为HCC的免疫治疗提供了新思路。

Abstract

Liver cancer has high prevalence and mortality rates around the world, and its development and progression are closely associated with the interaction between the tumor microenvironment and tumor-associated macrophages (TAMs). TAMs play a significant role in immune suppression, immune escape, cell proliferation, invasion, metastasis, and drug resistance in liver cancer. Traditional Chinese medicine (TCM), with its unique therapeutic concepts and methods, has shown great potential in regulating TAMs and improving the prognosis of liver cancer. This article reviews the role and molecular mechanisms of TCM in regulating TAMs for the treatment of liver cancer, discusses the key role of TAMs in the progression of liver cancer, and analyzes the impact of Chinese medicinal components on the recruitment, polarization, and activity of TAMs and the expression of related factors based on TCM theory. Studies have shown that TCM can regulate the polarization state of TAMs, promote the formation of M1-type antitumor macrophages, and inhibit the activity of M2-type tumor macrophages, thereby playing a role in inhibiting the proliferation of liver cancer cells, promoting apoptosis, inhibiting angiogenesis, and enhancing immune response. In addition, this article also summarizes the molecular targets and mechanisms of action of TCM monomers, compound prescriptions, and novel preparations in the treatment of liver cancer, such as inhibiting the secretion of cytokines by TAMs, regulating signaling pathways, and affecting metabolic pathways, in order to provide a scientific basis for the application of TCM in liver cancer treatment and offer new ideas for immunotherapy for liver cancer.

Graphical abstract

关键词

肝肿瘤 / 肿瘤相关巨噬细胞 / 中药

Key words

Liver Neoplasms / Tumor-Associated Macrophages / Traditional Chinese Drugs

引用本文

引用格式 ▾
唐怡,王国泰,蒋雨涵,吴晨旸. 中药调控肿瘤相关巨噬细胞对肝细胞癌的治疗作用与机制[J]. 临床肝胆病杂志, 2025, 41(06): 1199-1206 DOI:10.12449/JCH250630

登录浏览全文

4963

注册一个新账户 忘记密码

肝细胞癌(HCC)作为全球性高发病率、高病死率的疾病,其发病机制涉及病毒性肝炎、长期饮酒、非酒精性脂肪性肝病等多个因素1。在我国,多数HCC病例确诊时已处于晚期阶段,且伴随着较高的复发及转移风险,进而导致预后不良。据统计,HCC患者的5年总体生存率仅为14.1%2。因此,深入研究HCC的发病机制,并探索新的治疗手段以改善患者预后成为亟待解决的问题。
巨噬细胞作为固有免疫细胞的重要组成部分,在炎症、免疫应答和组织修复中起着关键作用3。肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)是浸润于肿瘤组织中的巨噬细胞,是肿瘤微环境(tumor microenvironment,TME)的重要组成部分,具有从抗肿瘤到促肿瘤的异质性和可极化的可塑性。在TME中,TAM主要表现为M2型巨噬细胞,可通过屏蔽肿瘤免疫监视,促进肿瘤发生、侵袭和转移4。研究发现,利用TAM的可塑性,诱导其从M2到M1型极化,可增强抗肿瘤免疫,抑制肿瘤转移5。因此,靶向TAM,减少M2型巨噬细胞的数量并促进其向M1型的极化,成为新兴的抗肿瘤治疗策略之一。
尽管中医古籍未直接提及HCC,但根据其症状,如腹痛、黄疸、消瘦等,可将其归入“肝积”“癥瘕”等病症范畴。现代中医认为,HCC的病因病机主要为毒邪留滞,损耗正气,虚损生积6。在中药治疗上,遵循“扶正祛邪”的原则,旨在调节TME,激活免疫细胞,促进肿瘤细胞凋亡和自噬。中药干预能够减少肿瘤中的M2型巨噬细胞,抑制TAM的募集,改变巨噬细胞的极化,增强免疫反应,发挥抗肿瘤作用7。此外,中药干预还能改善免疫抑制的TME,增强机体的抗肿瘤能力,改善患者生活质量和预后,降低肿瘤复发率。本文旨在探讨中药调节TAM治疗HCC的机制,为临床治疗和研究提供理论依据。

1 TAM概述

研究发现,TAM源自组织驻留巨噬细胞和骨髓来源单核细胞衍生的巨噬细胞,可在不同环境下极化为M1型和M2型8,这两种表型在炎症反应、肿瘤发展及免疫调节中发挥关键的调控作用(图1)。在肿瘤早期阶段,TAM通常为M1型,但随着TME的变化,TAM逐渐从M1型向M2型转变。此过程受多种细胞因子和信号通路调控,如IL-4通过Janus激酶/信号传导和转录激活蛋白6通路诱导M2型巨噬细胞极化,并与Krüppel样因子4和过氧化物酶体增殖物激活受体γ相互作用9。当阻断IL-4与其相关受体的相互作用时,可以诱导M2型巨噬细胞向M1型巨噬细胞转变10。此外,包括IL-4、TGF-β、IL-10和骨形态发生蛋白7在内的多种信号通过磷脂酰肌醇3激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/Akt)通路促进M2极化11。肝脏常驻巨噬细胞Kupffer细胞被认为是HCC特异性TAM,通过产生IL-6等细胞因子促进肿瘤发展12。因此,TAM的可塑性和特异性使其在肿瘤进展和免疫中扮演关键角色,针对调控M1/M2极化的抗肿瘤治疗策略具有良好前景。

2 TAM在HCC中的作用

2.1 TAM参与HCC血管生成

血管生成是肿瘤发生、发展及转移过程中的关键环节。TAM通过分泌血管内皮生长因子(vascular endothelial growth factor,VEGF)和TGF-β等血管生成因子以及基质金属蛋白酶促进新血管的形成,为肿瘤提供氧气和营养,并促进肿瘤细胞的侵袭和转移13。在高分化HCC中,TAM数量与肿瘤血管密度呈正相关。特定亚群,如CCR2+ TAM在血管化程度高的HCC中富集,尤其是在肝纤维化或肝硬化背景下发生的HCC,可促进血管生成和肿瘤血管化13。表达TIE2(酪氨酸激酶受体2)的TAM与HCC中微血管密度的增加呈正相关,证实了TAM在血管生成中的作用14。TAM还通过产生IL-23改变巨噬细胞功能,提高慢性HBV感染后VEGF水平,促进HCC的发展15。趋化因子C-X-C基序受体(C-X-C motif receptor,CXCR)4作为HCC组织中血管生成的新型血管标志物,其表达可由单核细胞/巨噬细胞通过细胞外调节蛋白激酶(extracellular signal-regulated kinase,ERK)信号通路促进,揭示了TAM在肿瘤血管生成中的调控作用13。因此,靶向TAM的治疗策略,如使用CCR2抑制剂或调节CXCR4的表达,可能成为提高HCC治疗效果的新途径。了解TAM对HCC血管生成的影响机制,对于开发新的治疗策略至关重要。

2.2 TAM参与免疫抑制与免疫逃逸

TAM能够分泌多种免疫抑制细胞因子,以促进肿瘤的免疫抑制和免疫逃逸。例如,TAM分泌的IL-1β,可以促进HCC细胞的上皮间质转化(epithelial-mesenchymal transition,EMT)和M2型巨噬细胞的炎症功能,增强肿瘤细胞的侵袭性和转移能力,同时参与免疫抑制和免疫逃逸16。IL-10通过抑制辅助性T细胞1的生成和活化、减少细胞因子的生成,从而抑制T细胞免疫应答17。而TGF-β抑制T细胞和自然杀伤细胞活性,同时促进调节性T细胞的分化和活化。除细胞因子外,TAM还分泌趋化因子,将免疫抑制细胞吸引至TME,从而增强肿瘤免疫抑制17

在TME中,TAM通过多种机制促进肿瘤免疫逃逸和免疫抑制,为肿瘤细胞的生长和转移创造有利条件。在缺氧条件下,TAM中人髓系细胞触发受体-1表达增加,通过ERK/核因子κB(nuclear factor kappa B,NF-κB)途径增加C-C基序配体,招募调节性T细胞,损害CD8+ T细胞的细胞毒性功能并诱导其凋亡,从而促进免疫抑制18。HCC细胞中环氧化酶2表达水平升高,通过促进M2型TAM极化,激活TGF-β途径,抑制CD8+ T细胞产生IFN-γ和颗粒酶B,导致T细胞功能耗竭和免疫抑制微环境的形成19。总之,TAM在HCC的免疫抑制和免疫逃逸中起着复杂而关键的作用,其通过多种机制帮助肿瘤细胞逃避免疫攻击,并为肿瘤的侵袭和转移提供支持。

2.3 TAM促进HCC细胞的增殖、侵袭和转移

TAM在HCC的增殖和转移中起关键作用。在TME中,TAM通过分泌多种细胞因子削弱T细胞的免疫监视功能,为肿瘤细胞的增殖和转移创造条件16。M2型TAM分泌的TNF-α通过激活Wnt/β-catenin信号通路,促进EMT和癌症干细胞特性,增强肿瘤细胞的增殖和侵袭20。HCC细胞分泌的TGF-β与T细胞免疫球蛋白和黏蛋白结构域蛋白3相互作用,诱导M2型巨噬细胞极化,促进肿瘤血管生成和转移21。缺氧条件下,HCC细胞中高迁移率族蛋白1表达增加,通过与TAM的相互作用来增加IL-6的产生,促进肿瘤侵袭和转移22。此外,TAM分泌的基质金属蛋白酶通过降解细胞外基质促进肿瘤细胞的侵袭和转移13。综上所述,TAM在HCC的增殖和转移中发挥着多方面的作用,其不仅直接促进肿瘤细胞的恶性行为,还通过调节TME,增强肿瘤的侵袭性和转移性。

2.4 TAM介导HCC耐药

TAM参与肿瘤发展的每个阶段,且其在TME中的变化可显著影响HCC对化疗药物的应答。索拉非尼作为美国食品药品监督管理局批准的一线治疗药物,可有效抑制HCC生长并延长患者生存期。然而,在临床试验中,患者对索拉非尼的敏感性降低,耐药性增加,这已成为HCC全身治疗有效性的主要障碍。M2型TAM通过分泌肝细胞生长因子激活PI3K/Akt、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和间质上皮转化因子受体等信号通路,促进HCC进展和对索拉非尼的耐药23。TAM还能通过CXCR2信号通路促进肿瘤细胞转移和免疫逃逸,增强HCC细胞对索拉非尼的耐药性24。此外,TAM还诱导HCC细胞自噬,增加肿瘤细胞对奥沙利铂等药物的耐药性25

靶向TAM能降低耐药性并增强HCC治疗效果。研究人员已开发了多种靶向策略,包括TAM耗竭、抑制TAM募集、TAM复极化等。例如,PFH@LSLP,一种针对HCC的多药递送脂质体系统,可通过减少TAM的募集和M2极化,增强CD8+ T细胞浸润,激活细胞内免疫应答,从而克服索拉非尼的耐药性26。进一步研究表明,IFN-α在索拉非尼治疗期间能够诱导M2型TAM向M1型转变,减少TAM介导的免疫抑制,从而提高治疗效果27。此外,程序性死亡蛋白配体1(programmed death-ligand 1,PD-L1)的上调是肿瘤免疫逃逸的关键机制。TAM通过表达PD-L1促进肿瘤免疫逃逸,调节TAM可以增强程序性死亡受体1(programmed cell death 1,PD-1)/PD-L1免疫治疗效果。唑来膦酸可减少PD-L1 TAM浸润,减轻CD8+ T细胞抑制,特别是在高尔基体膜蛋白1过表达的患者中提高抗PD-L1在HCC免疫治疗中的效果28。碳酸酐酶Ⅻ抑制剂可减少TAM浸润和C-C基序趋化因子配体8产生,抑制癌细胞EMT并减弱肿瘤生长和转移,与抗PD-1联合治疗可提高生存率1629。因此,靶向TAM为克服HCC耐药性提供了新方向。联合疗法,特别是结合免疫检查点抑制剂和其他药物,可能在逆转TAM介导的耐药性和增强HCC治疗效果方面发挥重要作用。同时,现代研究发现,中药能够调节TAM和重构TME,有助于预防肿瘤转移,强化机体对肿瘤的免疫反应,改善预后和延长生存期。因此,以TAM为靶点,深入探究其分子机制具有重要的科学价值和临床意义。

3 中药对HCC相关TAM的调节作用

现代研究表明,中药单体及复方可通过多个层面调控TAM的极化、募集、浸润及转移等过程,影响相关的信号传导途径,从而有效抑制HCC的发生与发展。

3.1 中药活性成分

3.1.1 生物碱类

澳洲茄边碱是从茄科植物龙葵中提取的一种甾体生物碱类化合物,具有抗病毒、抗肿瘤、免疫调节功能。研究显示,澳洲茄边碱可通过抑制白血病抑制因子(leukemia inhibitory factor,LIF)/微RNA(microRNA,miR)-192-5p/CYR61/Akt信号轴诱导HCC细胞的凋亡和自噬。此外,澳洲茄边碱还能通过LIF/磷酸化信号转导及转录激活因子3(phosphorylated signal transducer and activator of transcription 3,p-STAT3)信号通路促进M2型巨噬细胞向M1型转变,并调节巨噬细胞影响及其他免疫细胞,如髓系来源抑制性细胞、树突状细胞和T细胞,改善免疫抑制微环境30

岩黄连作为广西道地药材,常用于治疗疮疖肿毒、肝炎、肝硬化和HCC等,生物碱是其主要活性成分。研究表明,岩黄连总生物碱能够通过抑制PI3K/Akt信号通路来抑制M2型巨噬细胞的极化,下调M2相关标志物的表达,并促进M1型巨噬细胞的极化,调节免疫微环境,抑制HCC细胞的生长和转移31

青藤碱为中药青风藤的主要活性成分,临床常用于治疗类风湿性关节炎。现代研究发现,青藤碱可通过下调α7烟碱型乙酰胆碱受体(α7 nicotinic acetylcholine receptor,α7nAChR)的表达,促进TAM由M2型向M1型极化,抑制HCC的生长32

3.1.2 蒽醌类

大黄素是一种蒽醌类化合物,广泛存在于大黄、芦荟等植物中,具有抗炎、抗氧化和抗肿瘤作用。研究表明,大黄素能够调节巨噬细胞的极化状态,抑制其向M1或M2型的过度极化,从而恢复巨噬细胞稳态33。大黄素可通过增加miR-26a水平,降低TGF-β1表达,影响Akt信号通路,诱导M2型巨噬细胞向M1型转变,抑制HCC细胞的增殖和侵袭34

3.1.3 苯酞类

藁本内酯可抑制HCC细胞的恶性表型,并通过抑制Yes相关蛋白介导的IL-6分泌,降低IL-6受体/STAT3的激活,抑制HCC细胞诱导的巨噬细胞M2型极化,进而抑制HCC细胞的活力和迁移能力35

3.1.4 萜类

斑蝥素是斑蝥分泌的一种单萜类化合物,虽有毒性,但能够有效抑制癌细胞的生长、增殖和迁移。斑蝥素可上调miR-214促进巨噬细胞从M2型到M1型极化,并抑制β-catenin和STAT3信号通路,从而抑制肿瘤细胞的生存和侵袭36

隐丹参酮是从丹参中提取得到的二萜醌类化合物,具有抗炎和抗肿瘤活性。三氧化二砷(即砒霜)和隐丹参酮联合应用,可通过促进M1型巨噬细胞极化和降低M2型比例,增强腺苷酸激活蛋白激酶信号通路,促进糖酵解,重塑肿瘤免疫微环境,从而在HCC治疗中发挥重要作用37

3.1.5 黄酮类

槲皮素能够显著抑制HCC细胞的增殖、迁移、侵袭,并促进肿瘤细胞凋亡38。其还可通过促进自噬和调节巨噬细胞极化抑制HCC的发展。此外,槲皮素可通过调节NF-κB信号通路,抑制炎症因子TNF-α、IL-6和IL-17A的水平,增强M1型巨噬细胞极化39

黄芩苷是从中药黄芩中提取的黄酮类化合物,可通过诱导自噬激活NF-κB RelB/p52信号通路,促使TAM从促肿瘤生长的M2型极化为抗肿瘤活性的M1型40

3.1.6 甾体类

蟾毒灵是从蟾蜍分泌物中提取的甾体类化合物,具有抗炎和抗肿瘤特性。其通过抑制p50 NF-κB的过度表达,促进TAM从M2型向M1型极化,进而激活效应T细胞免疫反应。此外,蟾毒灵与抗PD-1抗体联合使用可增强HCC治疗效果41

C21甾体糖苷cynsaccatol L是从甘遂中提取的活性成分,可通过抑制Akt/ERK信号通路直接诱导HCC细胞凋亡。同时,在与巨噬细胞共培养的条件下,cynsaccatol L还能够调节TNF-α和IFN-γ等细胞因子,抑制M2型巨噬细胞的极化,增强吞噬功能,从而在TME中发挥协同抗肿瘤作用42

3.1.7 皂苷类

研究表明,黄芪甲苷Ⅳ这一中药活性成分能够以剂量依赖性方式抑制HCC细胞的增殖、迁移和侵袭43,其机制可能涉及通过Toll样受体4(Toll-like receptor 4,TLR4)/NF-κB/STAT3信号通路抑制M2型巨噬细胞的极化,从而改变TME中的免疫状态,有潜力成为HCC治疗药物。

3.1.8 多糖类

灵芝多糖是灵芝属真菌菌丝的次生代谢产物,可激活MAPK/NF-κB信号通路,促进巨噬细胞向M1型极化,增强吞噬活性和促炎细胞因子产生,抑制M2型极化和抗炎细胞因子的释放,从而在TME中发挥抗肿瘤作用,抑制HCC细胞的生长和肿瘤进展44

灵芝的另一种活性成分灵芝孢子粉多糖,可激活巨噬细胞,促进其向M1型极化,并分泌多种炎症因子和细胞因子,重塑TME。此外,其还通过激活PI3K/Akt信号通路,影响线粒体介导的凋亡信号通路,促进肿瘤细胞凋亡45

3.1.9 酚类

中药毛诃子中的单宁类成分可通过上调M1型巨噬细胞标志物(如TNF-α、IL-1β等),下调M2型巨噬细胞标志物精氨酸酶-1、甘露糖受体进而重编程巨噬细胞,诱导其向M2型极化。这增加了T细胞在肿瘤中的浸润,并恢复了CD8+ T细胞毒性,从而抑制HCC生长46。上述中药单体及其活性成分调控TAM的作用机制总结见表1

3.2 中药复方及其有效成分

参莲汤是上海中医药大学附属曙光医院的经验方,由党参、陈皮、半枝莲组成,具有补气健脾、清热解毒、抗癌之功效。Li等47研究发现,参莲汤通过抑制5'腺苷酸活化蛋白激酶(5'-AMP-activated protein kinase,AMPK)/p38 MAPK信号通路,降低补体成分5的表达,从而提高M1/M2型巨噬细胞比率,缓解HCC的免疫抑制状态。

西黄丸作为传统中药复方,广泛应用于乳腺癌、HCC、结直肠癌等多种恶性肿瘤的治疗,具有清热解毒和营消肿功效。研究发现,西黄丸可促进巨噬细胞从M1向M2表型转变,促进癌细胞凋亡。此外,西黄丸还能通过STAT3蛋白调节PD-1/PD-L1信号通路来影响肿瘤免疫48

益脾养肝方是陕西省名中医常占杰教授在临床上沿用多年的防治HCC前病变的常用经验方。实验显示,该方剂可显著降低M1型巨噬细胞标志物CD68和促炎因子IL-6、TNF-α的表达,抑制M1型巨噬细胞的极化,减少肝细胞异型增生和炎性细胞浸润,降低肝组织中肝细胞恶变标志物的表达,抑制HCC前病变的发展49

黄芩汤由黄芩、白芍、甘草和大枣组成,可促进肿瘤细胞凋亡,调节TME中的炎症和自噬,增强M1型巨噬细胞浸润,并激活ERK1/2信号通路,改善TME,提高肿瘤细胞对索拉非尼的敏感性,增强其抗HCC效果50。以上中药复方及配伍药调控TAM的作用机制总结见表2

3.3 其他新型化合物

甘草,性甘平补益,具有调节机体免疫的作用。甘草次酸作为甘草的主要成分,对免疫系统也存在调节作用。川芎,性温味辛,具有活血行气、祛风止痛的功效。作为川芎的关键活性成分,四甲基吡嗪具有改善微循环、抗炎、抗氧化等作用。TOGA是由18β-甘草酸和四甲基吡嗪及一个小分子氨基酸结合而成的共轭体,可通过降低TAM中IL-1R1表达,抑制IL-1β/IL-1R1信号通路,阻断NF-κB信号传导,减少EMT相关蛋白表达,降低肿瘤细胞侵袭和迁移能力。这些作用机制共同促进了TOGA对TME的调节,抑制肿瘤细胞免疫逃逸,增强抗肿瘤免疫反应51

黄芪多糖修饰的超顺磁性氧化铁纳米复合物通过调节巨噬细胞的极化,增强M1型巨噬细胞比例及其对HCC细胞的杀伤能力52。另有研究开发了一种基于甘草酸的脂质框架纳米载体(GLLNP),用于运载雷公藤内酯(雷公藤中提取的具有抗肿瘤活性的化合物)。GLLNP通过提高药物的装载效率、稳定性和肿瘤靶向性,促进了HCC细胞凋亡,并调节TAM从M2型向M1型的极化,改善肿瘤免疫抑制环境,最终实现协同抗HCC的效果,为HCC的免疫化疗提供了新策略53

4 总结与展望

中药可通过调节TAM的极化状态,促进M2型向M1型转换,从而重塑TME,抑制肿瘤血管生成,并激活抗肿瘤免疫反应。此外,中药的多靶点作用和较小的毒副作用为其在HCC治疗方面提供了独特的优势。尽管如此,中药调控TAM的研究仍面临一些挑战和改进空间。首先,研究需要进一步深入,特别是在探究中药如何影响巨噬细胞的募集、浸润、转移,以及是否抑制肿瘤血管生成等方面。其次,药对配伍研究相对较少,且多集中在单体成分上,需要更多关注中药复方中的药对相互作用及其对TAM调控的影响,有助于揭示更为复杂的调控网络和潜在的协同效应。个体化、特异性、高效性是肿瘤治疗的未来发展趋势,因此中药新型制剂的研究和开发显得尤为重要。利用M1型巨噬细胞作为药物递送系统的载体,结合中药纳米技术,有望实现精准靶向肿瘤治疗,提高治疗效果。此外,中药治疗的个体化也是未来研究的一个重要方向,通过深入研究不同患者的TME和TAM特性,可以为其提供更为个性化的治疗方案。

综上所述,中药在调控TAM方面具有巨大的潜力和独特的优势,但仍需要更多的研究来阐明其作用机制和优化治疗方案。未来的研究应结合现代药理学与分子生物学技术,深入探索中药对TAM调控的分子机制,发掘更多的中药单体和复方,为HCC的治疗提供更多的选择和可能性。同时,应加强中药新型制剂的研究,提高中药的临床应用价值,以期为HCC患者带来更为有效和安全的治疗手段。

参考文献

[1]

SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660 .

[2]

ALLEMANI C, MATSUDA T, di CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075. DOI: 10.1016/S0140-6736(17)33326-3 .

[3]

ZHANG CY, YANG M, ERICSSON AC. Function of macrophages in disease: Current understanding on molecular mechanisms[J]. Front Immunol, 2021, 12: 620510. DOI: 10.3389/fimmu.2021.620510 .

[4]

ZHANG X, JI LL, LI MO. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism[J]. Immunity, 2023, 56(1): 14-31. DOI: 10.1016/j.immuni.2022.12.003 .

[5]

YUAN RF, LI SF, GENG H, et al. Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis[J]. Int Immunopharmacol, 2017, 49: 30-37. DOI: 10.1016/j.intimp.2017.05.014 .

[6]

Branch of Hepatobiliary Diseases, China Association of Chinese Medicine. Guideline for traditional Chinese medicine diagnosis and treatment of primary liver cancer[J]. J Clin Hepatol, 2024, 40(5): 919-927. DOI: 10.12449/JCH240509 .

[7]

中华中医药学会肝胆病分会. 原发性HCC中医诊疗指南[J]. 临床肝胆病杂志, 2024, 40(5): 919-927. DOI: 10.12449/JCH240509 .

[8]

ZHANG Y, LOU YN, WANG JB, et al. Research status and molecular mechanism of the traditional Chinese medicine and antitumor therapy combined strategy based on tumor microenvironment[J]. Front Immunol, 2021, 11: 609705. DOI: 10.3389/fimmu.2020.609705 .

[9]

CHU XY, TIAN Y, LV C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages[J]. Mol Cancer, 2024, 23(1): 150. DOI: 10.1186/s12943-024-02064-1 .

[10]

DANIEL B, NAGY G, HORVATH A, et al. The IL-4/STAT6/PPARγ signaling axis is driving the expansion of the RXR heterodimer cistrome, providing complex ligand responsiveness in macrophages[J]. Nucleic Acids Res, 2018, 46(9): 4425-4439. DOI: 10.1093/nar/gky157 .

[11]

LIU HX, AMAKYE WK, REN JY. Codonopsis pilosula polysaccharide in synergy with dacarbazine inhibits mouse melanoma by repolarizing M2-like tumor-associated macrophages into M1-like tumor-associated macrophages[J]. Biomed Pharmacother, 2021, 142: 112016. DOI: 10.1016/j.biopha.2021.112016 .

[12]

VERGADI E, IERONYMAKI E, LYRONI K, et al. Akt signaling pathway in macrophage activation and M1/M2 polarization[J]. J Immunol, 2017, 198(3): 1006-1014. DOI: 10.4049/jimmunol.1601515 .

[13]

KONG LX, ZHOU YJ, BU H, et al. Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice[J]. J Exp Clin Cancer Res, 2016, 35(1): 131. DOI: 10.1186/s13046-016-0412-1 .

[14]

YAO CY, WU SL, KONG J, et al. Angiogenesis in hepatocellular carcinoma: Mechanisms and anti-angiogenic therapies[J]. Cancer Biol Med, 2023, 20(1): 25-43. DOI: 10.20892/j.issn.2095-3941.2022.0449 .

[15]

JAKAB M, ROSTALSKI T, LEE KH, et al. TIE2 receptor in tumor-infiltrating macrophages is dispensable for tumor angiogenesis and tumor relapse after chemotherapy[J]. Cancer Res, 2022, 82(7): 1353-1364. DOI: 10.1158/0008-5472.CAN-21-3181 .

[16]

ZANG MY, LI Y, HE H, et al. IL-23 production of liver inflammatory macrophages to damaged hepatocytes promotes hepatocellular carcinoma development after chronic hepatitis B virus infection[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(12): 3759-3770. DOI: 10.1016/j.bbadis.2018.10.004 .

[17]

GRAHAM N, POLLARD JW. An acid trip activates protumoral macrophages to promote hepatocellular carcinoma malignancy[J]. J Clin Invest, 2022, 132(7): e158562. DOI: 10.1172/JCI158562 .

[18]

LI MJ, HE LY, ZHU J, et al. Targeting tumor-associated macrophages for cancer treatment[J]. Cell Biosci, 2022, 12(1): 85. DOI: 10.1186/s13578-022-00823-5 .

[19]

WU QC, ZHOU WH, YIN SY, et al. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer[J]. Hepatology, 2019, 70(1): 198-214. DOI: 10.1002/hep.30593 .

[20]

YIN Y, FENG WB, CHEN J, et al. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: From bench to bedside[J]. Exp Hematol Oncol, 2024, 13(1): 72. DOI: 10.1186/s40164-024-00539-x .

[21]

CHEN YX, WEN HH, ZHOU C, et al. TNF-α derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/β-catenin pathway in SMMC-7721 hepatocellular carcinoma cells[J]. Exp Cell Res, 2019, 378(1): 41-50. DOI: 10.1016/j.yexcr.2019.03.005 .

[22]

YAN WJ, LIU X, MA HX, et al. TIM-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages[J]. Gut, 2015, 64(10): 1593-1604. DOI: 10.1136/gutjnl-2014-307671 .

[23]

JIANG J, WANG GZ, WANG Y, et al. Hypoxia-induced HMGB1 expression of HCC promotes tumor invasiveness and metastasis via regulating macrophage-derived IL-6[J]. Exp Cell Res, 2018, 367(1): 81-88. DOI: 10.1016/j.yexcr.2018.03.025 .

[24]

DONG NN, SHI XY, WANG SH, et al. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma[J]. Br J Cancer, 2019, 121(1): 22-33. DOI: 10.1038/s41416-019-0482-x .

[25]

WANG HC, HAUNG LY, WANG CJ, et al. Tumor-associated macrophages promote resistance of hepatocellular carcinoma cells against sorafenib by activating CXCR2 signaling[J]. J Biomed Sci, 2022, 29(1): 99. DOI: 10.1186/s12929-022-00881-4 .

[26]

FU XT, SONG K, ZHOU J, et al. Tumor-associated macrophages modulate resistance to oxaliplatin via inducing autophagy in hepatocellular carcinoma[J]. Cancer Cell Int, 2019, 19: 71. DOI: 10.1186/s12935-019-0771-8 .

[27]

WANG YH, WANG ZJ, JIA F, et al. CXCR4-guided liposomes regulating hypoxic and immunosuppressive microenvironment for sorafenib-resistant tumor treatment[J]. Bioact Mater, 2022, 17: 147-161. DOI: 10.1016/j.bioactmat.2022.01.003 .

[28]

NIU ZS, WANG WH, NIU XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(46): 6433-6477. DOI: 10.3748/wjg.v28.i46.6433 .

[29]

CHEN JH, LIN ZF, LIU L, et al. GOLM1 exacerbates CD8+ T cell suppression in hepatocellular carcinoma by promoting exosomal PD-L1 transport into tumor-associated macrophages[J]. Signal Transduct Target Ther, 2021, 6(1): 397. DOI: 10.1038/s41392-021-00784-0 .

[30]

NING WR, JIANG D, LIU XC, et al. Carbonic anhydrase XII mediates the survival and prometastatic functions of macrophages in human hepatocellular carcinoma[J]. J Clin Invest, 2022, 132(7): e153110. DOI: 10.1172/JCI153110 .

[31]

YIN SS, JIN WK, QIU YL, et al. Solamargine induces hepatocellular carcinoma cell apoptosis and autophagy via inhibiting LIF/miR-192-5p/CYR61/Akt signaling pathways and eliciting immunostimulatory tumor microenvironment[J]. J Hematol Oncol, 2022, 15(1): 32. DOI: 10.1186/s13045-022-01248-w .

[32]

SU Q, CHEN HR, LU J, et al. Experimental study of corydalis saxicola total alkaloids inhibiting M2-type macrophages against mice liver cancer[J]. J Chin Med Materials, 2023, 46(7): 1760-1765. DOI: 10.13863/j.issn1001-4454.2023.07.031 .

[33]

苏倩, 陈好然, 陆洁, 岩黄连总生物碱抑制M2型巨噬细胞抗小鼠HCC实验研究[J]. 中药材, 2023, 46(7): 1760-1765. DOI: 10.13863/j.issn1001-4454.2023.07.031 .

[34]

LIU XY, CAO MD, LAN Y, et al. Effects of sinomenine on α7nAChR-involved M2 polarization of macrophages and TAM polarization in hepatoma ascitic tumor mouse model[J]. Tradit Chin Drug Res Clin Pharmacol, 2022, 33(12): 1645-1653. DOI: 10.19378/j.issn.1003-9783.2022.12.008 .

[35]

刘新迎, 曹敏蝶, 蓝燕, 青藤碱对α7nAChR参与的巨噬细胞M2极化和小鼠HCCTAM极化的干预作用[J]. 中药新药与临床药理, 2022, 33(12): 1645-1653. DOI: 10.19378/j.issn.1003-9783.2022.12.008 .

[36]

IWANOWYCZ S, WANG JF, ALTOMARE D, et al. Emodin bidirectionally modulates macrophage polarization and epigenetically regulates macrophage memory[J]. J Biol Chem, 2016, 291(22): 11491-11503. DOI: 10.1074/jbc.M115.702092 .

[37]

RAHMAN MA, RAKIB-UZ-ZAMAN SM, CHAKRABORTI S, et al. Advancements in utilizing natural compounds for modulating autophagy in liver cancer: Molecular mechanisms and therapeutic targets[J]. Cells, 2024, 13(14): 1186. DOI: 10.3390/cells13141186 .

[38]

YANG JK, XING ZY. Ligustilide counteracts carcinogenesis and hepatocellular carcinoma cell-evoked macrophage M2 polarization by regulating yes-associated protein-mediated interleukin-6 secretion[J]. Exp Biol Med (Maywood), 2021, 246(17): 1928-1937. DOI: 10.1177/15353702211010420 .

[39]

LU S, GAO Y, HUANG XL, et al. Cantharidin exerts anti-hepatocellular carcinoma by miR-214 modulating macrophage polarization[J]. Int J Biol Sci, 2014, 10(4): 415-425. DOI: 10.7150/ijbs.8002 .

[40]

JIANG T, HUANG JB, XU CY, et al. Arsenic trioxide cooperate cryptotanshinone exerts antitumor effect by medicating macrophage polarization through glycolysis[J]. J Immunol Res, 2022, 2022: 2619781. DOI: 10.1155/2022/2619781 .

[41]

JI Y, LI L, MA YX, et al. Quercetin inhibits growth of hepatocellular carcinoma by apoptosis induction in part via autophagy stimulation in mice[J]. J Nutr Biochem, 2019, 69: 108-119. DOI: 10.1016/j.jnutbio.2019.03.018 .

[42]

WU RX, ZHOU T, XIONG JQ, et al. Quercetin, the ingredient of Xihuang pills, inhibits hepatocellular carcinoma by regulating autophagy and macrophage polarization[J]. Front Biosci (Landmark Ed), 2022, 27(12): 323. DOI: 10.31083/j.fbl2712323 .

[43]

TAN HY, WANG N, MAN K, et al. Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin[J]. Cell Death Dis, 2015, 6(10): e1942. DOI: 10.1038/cddis.2015.271 .

[44]

YU Z, LI YY, LI Y, et al. Bufalin stimulates antitumor immune response by driving tumor-infiltrating macrophage toward M1 phenotype in hepatocellular carcinoma[J]. J Immunother Cancer, 2022, 10(5): e004297. DOI: 10.1136/jitc-2021-004297 .

[45]

FENG XY, LI JC, LI HM, et al. Bioactive C21 steroidal glycosides from Euphorbia kansui promoted HepG2 cell apoptosis via the degradation of ATP1A1 and inhibited macrophage polarization under co-cultivation[J]. Molecules, 2023, 28(6): 2830. DOI: 10.3390/molecules28062830 .

[46]

CHEN YQ, FAN WS, ZHAO YY, et al. Progress in the regulation of immune cells in the tumor microenvironment by bioactive compounds of traditional Chinese medicine[J]. Molecules, 2024, 29(10): 2374. DOI: 10.3390/molecules29102374 .

[47]

LI GL, TANG JF, TAN WL, et al. The anti-hepatocellular carcinoma effects of polysaccharides from Ganoderma lucidum by regulating macrophage polarization via the MAPK/NF-‍κB signaling pathway[J]. Food Funct, 2023, 14(7): 3155-3168. DOI: 10.1039/d2fo02191a .

[48]

SONG M, LI ZH, GU HS, et al. Ganoderma lucidum spore polysaccharide inhibits the growth of hepatocellular carcinoma cells by altering macrophage polarity and induction of apoptosis[J]. J Immunol Res, 2021, 2021: 6696606. DOI: 10.1155/2021/6696606 .

[49]

CHANG ZH, ZHANG QN, HU Q, et al. Tannins in Terminalia bellirica inhibits hepatocellular carcinoma growth via re-educating tumor-associated macrophages and restoring CD8+T cell function[J]. Biomed Pharmacother, 2022, 154: 113543. DOI: 10.1016/j.biopha.2022.113543 .

[50]

LI WX, YOU LP, LIN JC, et al. An herbal formula Shenlian decoction upregulates M1/M2 macrophage proportion in hepatocellular carcinoma by suppressing complement cascade[J]. Biomed Pharmacother, 2024, 177: 116943. DOI: 10.1016/j.biopha.2024.116943 .

[51]

WANG Y, WANG WH, LIU KL, et al. The mechanism of Xihuang pills’ intervention in the tumour immune microenvironment for the treatment of liver cancer based on the STAT3-PDL1 pathway[J]. J Ethnopharmacol, 2024, 331: 118278. DOI: 10.1016/j.jep.2024.118278 .

[52]

HUANG Y, GOU XY, GUAN X, et al. Exploration on the mechanism of Yipi Yanggan prescription for the treatment of liver precancerous lesion based on M1 type macrophage polarization-chronic inflammation-liver cell malignant transformation[J]. Chin J Inf Tradit Chin Med, 2024, 31(10): 81-88. DOI: 10.19879/j.cnki.1005-5304.202404384 .

[53]

黄玉, 苟雪源, 关茜, 基于M1型巨噬细胞极化-慢性炎症-肝细胞恶变探究益脾养肝方治疗HCC前病变作用机制[J]. 中国中医药信息杂志, 2024, 31(10): 81-88. DOI: 10.19879/j.cnki.1005-5304.202404384 .

[54]

LAM W, JIANG ZL, GUAN FL, et al. PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment[J]. Sci Rep, 2015, 5: 9384. DOI: 10.1038/srep09384 .

[55]

WANG X, TAN Y, ZHANG YL, et al. The novel glycyrrhetinic acid-tetramethylpyrazine conjugate TOGA induces anti-hepatocarcinogenesis by inhibiting the effects of tumor-associated macrophages on tumor cells[J]. Pharmacol Res, 2020, 161: 105233. DOI: 10.1016/j.phrs.2020.105233 .

[56]

HUANG LQ, SHI XM, WANG JR, et al. Preparation and polarization activity research of Astragalus polysaccharide-superparamagnetic iron oxide nanocomposite[J]. Acta Pharm Sin, 2023, 58(3): 779-788. DOI: 10.16438/j.0513-4870.2022-1059 .

[57]

黄琳清, 史新萌, 王静蓉, 黄芪多糖-超顺磁性氧化铁纳米复合物的制备及其诱导巨噬细胞极化的活性研究[J]. 药学学报, 2023, 58(3): 779-788. DOI: 10.16438/j.0513-4870.2022-1059 .

[58]

XU ZY, HUANG Y, WU YH, et al. Glycyrrhizic acid-lipid framework nanovehicle loading triptolide for combined immunochemotherapy[J]. ACS Appl Mater Interfaces, 2023, 15(35): 41337-41350. DOI: 10.1021/acsami.3c08003 .

基金资助

AI Summary AI Mindmap
PDF (928KB)

1264

访问

0

被引

详细

导航
相关文章

AI思维导图

/