转运RNA衍生小RNA(tsRNA)的生物学功能及在肝脏疾病中的表达和临床意义

李银丽 ,  徐炎 ,  管志伟 ,  孟璐 ,  渠怡彤 ,  邱建利

临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1227 -1234.

PDF (1886KB)
临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1227 -1234. DOI: 10.12449/JCH250634
综述

转运RNA衍生小RNA(tsRNA)的生物学功能及在肝脏疾病中的表达和临床意义

作者信息 +

Biological function of tRNA-derived small RNA and its expression and clinical significance in liver diseases

Author information +
文章历史 +
PDF (1930K)

摘要

肝脏疾病早期不易被发现,有创性诊断方式如肝穿刺虽然诊断相对准确,但接受度不高,严重制约肝脏疾病诊疗技术的提高,因此寻找新的生物标志物及新的治疗靶点尤为重要。转运RNA衍生小RNA(tsRNA)作为新兴的液体活检生物标志物,在病毒性肝炎、脂肪性肝病、肝损伤、肝癌等肝脏疾病中异常表达,通过发挥调节基因表达、表观遗传调控、蛋白质翻译等生物学功能,影响肝脏疾病的发生和进展。本文就tsRNA的来源和分类、生物学功能以及tsRNA作为肝脏疾病生物标志物和潜在治疗靶点进行综述,以期为肝脏疾病的早期诊断及治疗提供思路。

Abstract

Liver diseases cannot be easily detected in the early stage, and although invasive diagnostic methods, such as liver biopsy, are relatively accurate, they tend to have a low degree of acceptance, which greatly limits the improvement in diagnosis and treatment techniques for liver diseases. Therefore, it is of great importance to search for new biomarkers and therapeutic targets. As an emerging biomarker for liquid biopsy, tRNA-derived small RNA (tsRNA) is abnormally expressed in various liver diseases including viral hepatitis, fatty liver disease, liver injury, and liver cancer, and it can affect the development and progression of liver diseases by regulating the biological functions such as gene expression, epigenetic regulation, and protein translation. This article reviews the origin, classification, and biological function of tsRNA, as well as the research advances in tsRNA as biomarkers and potential therapeutic targets for liver diseases, so as to provide ideas for the early diagnosis and treatment of liver diseases.

Graphical abstract

关键词

微RNAs / 肝疾病 / 生物标记

Key words

MicroRNAs / Liver Diseases / Biomarkers

引用本文

引用格式 ▾
李银丽,徐炎,管志伟,孟璐,渠怡彤,邱建利. 转运RNA衍生小RNA(tsRNA)的生物学功能及在肝脏疾病中的表达和临床意义[J]. 临床肝胆病杂志, 2025, 41(06): 1227-1234 DOI:10.12449/JCH250634

登录浏览全文

4963

注册一个新账户 忘记密码

世界卫生组织报告显示,肝病相关死亡率存在显著地域差异:亚太地区肝病致死占比达4.6%,显著高于美洲(2.7%)和欧洲地区(2.1%)1。我国作为肝病负担最重的国家之一,疾病谱系呈现动态演变特征:1992年前病毒性肝炎占据主导地位,随着乙型肝炎疫苗普及和抗病毒治疗方案优化,代谢相关(非酒精性)脂肪性肝病(metabolic dysfunction-associated fatty liver disease,MAFLD)现已成为慢性肝病首要病因2。值得注意的是,MAFLD向终末期肝病及肝细胞癌(hepatocellular carcinoma,HCC)的转化率亦呈逐年上升趋势3-4。尽管当前诊疗体系整合了无创影像、肝穿刺活检、靶向药物及免疫治疗等多模态手段,肝病短期预后获得一定改善,但长期预后仍不理想5,因此,进一步探索肝病诊治新方法势在必行。近年来,液体活检技术因其无创、动态监测等优势,在肝病领域展现出重要应用价值6。其中,转运RNA衍生小RNA(transfer RNA-derived small RNA,tsRNA)作为非编码RNA家族成员之一,在血管生成素(angiogenin,ANG)、Y盒结合蛋白1、G蛋白信号调节因子4等关键分子调控下,通过表观遗传修饰、转录后调控及翻译调控等多种作用机制,参与脂肪性肝病、慢加急性肝衰竭(acute-on-chronic liver failure,ACLF)及HCC等疾病的病理进程,具有重要的应用前景7。本文系统解析tsRNA的生成、分类、生物学功能及其在肝病诊疗中的应用进展,旨在为精准医学时代的肝病管理提供新视角。

1 tsRNA的来源与分类

tsRNA由转运RNA(transfer RNA,tRNA)衍生而成,依据切割位点的差异,可分为tRNA衍生片段(tRNA-derived RNA fragment,tRF)和tRNA半分子(tRNA-derived stressed-induced RNA,tiRNA)两种主要类型(表1)。

1.1 tRF

根据tRNA切割位点的不同,tRF可进一步分为tRF-1、tRF-2、tRF-3、tRF-5和i-tRF五个亚类,其长度为14~30 nt8。其中,tRF-1又称3'U-tRF,来源于前体tRNA的3'端,经核糖核酸酶Z剪切生成,具有特征性多聚尿嘧啶(polyuridine)序列9。tRF-3亦称3'tRF,由成熟tRNA T-环处经核酸内切酶切割产生,其成熟tRNA 3'端包含特异性CCA结构10。tRF-5亦称5'tRF,来源于成熟tRNA的5'末端,是经Dicer酶切割tRNA D-环或D-环与反密码子环间区域产生的片段;而i-tRF和tRF-2的生成机制仍有待阐明11

1.2 tiRNA

tiRNA在缺氧、紫外线辐射、氧化应激等病理条件下,由成熟tRNA反密码子环经ANG特异性切割生成,长度为31~40 nt,主要包括3'tiRNA与5'tiRNA两种类型12。其中,3'tiRNA以成熟tRNA 3'末端为起点,延至反密码子环切割位点;5'tiRNA则自成熟tRNA 5'末端延伸至反密码子环区域8。值得注意的是,当产生的转录本长度显著超过典型tiRNA时,该类分子可被分类为应激诱导tRNA-3及应激诱导tRNA-513

2 tsRNA的生物学功能

tsRNA通过调节基因表达、参与表观遗传调控及调控蛋白质翻译等途径发挥生物学作用,进而参与多种疾病的发生发展。鉴于当前研究领域存在命名体系混乱的问题(主要表现为使用实验室内部命名规则标注特定tsRNA分子),本研究通过系统性梳理现有科研成果,构建标准化分类框架。对于未达成学术共识的命名问题,统一保留“tsRNA”这一通用表述。

2.1 调节基因表达

tsRNA通过促进基因甲基化、介导转录后基因沉默及调节mRNA稳定性3种机制调节基因表达。其作用机制表现为:与PIWI样蛋白1(PIWI-like protein 1,PIWIL1)等PIWI家族蛋白结合形成复合物,联合DNA甲基转移酶诱导H3K9甲基化,实现转录抑制效应,典型例子为td-piR(Glu)通过该机制显著抑制CD1A转录14-15图1);与Argonaute(AGO)蛋白结合发挥转录后沉默功能,如胃癌中tRF-3017A通过下调神经EGFL样2的表达水平调控肿瘤转移进程16,tRF-33靶向STAT3 mRNA的3'非翻译区抑制STAT3通路活性17,提示tsRNA可能与微RNA(miRNA,miR)类似,通过与AGO家族蛋白结合并靶向具有互补序列的mRNA,发挥其转录后沉默功能(图2);通过竞争性结合RNA结合蛋白促进致癌转录物降解(图3),如Glu/Asp/Gly/Tyr来源的tsRNA通过与Y盒结合蛋白1结合降低致癌转录物稳定性18,tRF3E通过竞争性结合核仁素导致p53 mRNA翻译增加,从而抑制肿瘤的发生19

2.2 调控表观遗传

tsRNA通过代际传递表观遗传信息及调控RNA修饰,介导表观遗传调控。研究发现,父代高脂饮食模型中,精子tRF通过干扰F1代胚胎及胰岛组织代谢通路相关基因表达,导致代谢紊乱的遗传20;母体高脂饮食可通过重塑子代精子tsRNA表达谱,诱发肥胖及代谢综合征等相关表型的代际传递21。研究提示,精子tsRNA具有表观遗传信息载体的生物学功能。值得关注的是,DNMT2(DNA甲基转移酶2)的功能缺失可通过干扰RNA修饰事件,有效阻断tsRNA介导的代谢性疾病代际传递,这一发现为高脂饮食诱导的代谢病防治提供了新靶点22-23

2.3 调控蛋白质翻译

总体上,tsRNA通过AGO依赖与非依赖两种机制调控蛋白质翻译:在AGO依赖途径中,tsRNA优先结合AGO蛋白,通过其7-mer基序靶向mRNA中的保守位点进行反义匹配,抑制mRNA翻译活性,进而抑制蛋白质翻译功能24;在非AGO途径中,5'-tiRNA-Gln的5'TOG基序可与核糖体竞争性结合真核翻译起始因子4F(eukaryotic initiation factor 4F,eIF4F),通过RG4结构体的形成削弱翻译起始复合物与mRNA的结合效率25图4)。跨物种研究显示,哺乳动物细胞中,特定tsRNA通过结合小核糖体亚基发挥翻译抑制作用26-28;而在布氏锥虫应激恢复期,tRNAThr3'half通过促进mRNA核糖体加载加速蛋白质合成28。机制研究进一步揭示,LeuCAG3'tsRNA通过碱基互补识别核糖体蛋白S28(ribosomal protein S28,RPS28)mRNA的二级结构,调控核糖体生物合成效率,从而促进蛋白质翻译29图5)。以上证据表明,tsRNA可通过不同方式调控蛋白质翻译,并产生不同的生物效应。

2.4 调节细胞凋亡

tsRNA能够特异性地与细胞色素C(cytochrome C,Cyt C)结合,这一过程对凋亡通路的调节至关重要。在细胞凋亡的早期阶段,Cyt C从线粒体释放到细胞质,与Apaf-1(凋亡蛋白激活因子1)结合,激活Caspase-9(胱天蛋白酶-9),启动凋亡级联反应。然而,tsRNA与Cyt C的结合能够有效阻止Cyt C与Apaf-1的结合,从而抑制Caspase-9的激活,阻断凋亡小体的形成,抑制细胞凋亡的进程(图630。在生理状态下,tsRNA作为内源性凋亡信号抑制因子,通过直接或间接调控凋亡相关蛋白,参与维持细胞凋亡的平衡。然而,在应激条件下,tsRNA的水平显著上调,在保护细胞免受凋亡的同时,可能诱导凋亡调控的逃逸机制,使细胞对凋亡信号产生抵抗31。这意味着tsRNA在细胞凋亡中可能扮演着双重角色——既作为生存因子保护细胞免于凋亡,又作为促增殖因子,可能诱导恶性细胞增殖。

2.5 调控细胞周期

tsRNA可直接或间接地调控细胞周期。tRF-1001作为肿瘤细胞生长的关键因子,其功能抑制可有效干预细胞周期,将细胞阻滞于G2期,同时抑制DNA生物合成,从而直接抑制肿瘤细胞增殖32。此外,在非小细胞肺癌中,tRF-Leu-CAG的过表达可显著增强AURKA(极光激酶A)的活性,间接促进非小细胞肺癌G0/G1期的细胞周期进程33

3 tsRNA与肝脏疾病

随着高通量测序技术的发展,tsRNA的临床应用价值逐渐被揭示34。研究表明,部分tsRNA在病毒性肝炎、脂肪性肝病、肝癌等肝脏疾病中呈现异常表达,这些表达失调的tsRNA可能作为肝病诊断和预后判断的新型生物标志物,同时也是肝脏疾病潜在的治疗靶点。

3.1 tsRNA与脂肪性肝病

脂肪性肝病包括酒精性肝病(alcoholic liver disease,ALD)和MAFLD。脂肪性肝病已成为全球范围内严重的健康问题,尤其是MAFLD的发病率逐年上升,且发病年龄趋于年轻化,儿童脂肪肝的患病率也显著增加35-36。然而,目前尚无针对性的有效治疗药物。因此,探索新的生物标志物及治疗靶点具有重要的临床意义。

3.1.1 tsRNA与ALD

ALD的发病机制复杂,其核心在于酒精通过多重信号通路诱导肝细胞过度氧化应激、炎症反应及肝脂质代谢紊乱等病理过程。其中,C3(补体成分3)/CYP2E1(细胞色素P450 2E1)/Gly-tRF(甘氨酸转运RNA片段)/SIRT1(沉默信息调节因子1)信号通路在ALD的发病及进展中起关键作用37。酒精过量导致的氧化应激可激活补体系统,特别是补体C3,其激活产物C3a和Asp可促进细胞色素P450酶CYP2E1的表达。这一过程间接刺激了Gly-tRF的表达,而Gly-tRF的增加可下调SIRT1的表达,导致脂肪生成增强,同时抑制脂肪酸β氧化,最终引发肝脂肪变性38。因此,针对C3激活步骤的补体抑制剂及Gly-tRF抑制剂可能通过阻断这一关键信号通路,缓解酒精引起的肝损伤,成为ALD的潜在治疗靶点。

3.1.2 tsRNA与MAFLD

MAFLD的病理本质在于脂质代谢异常导致脂肪在肝细胞内蓄积。部分tsRNA由肝细胞表达和分泌,在脂质代谢的调节过程中发挥重要作用,从而影响MAFLD的发生和进展39。临床研究发现,tRF-Val-CAC-005、tRF-Ala-CGC-006和tiRNA-His-GTG-001在MAFLD患者血浆中的表达水平显著高于健康者,提示tsRNA可能作为MAFLD早期诊断的生物标志物。此外,在MAFLD小鼠模型中,上述tsRNA的血浆水平同样升高,并展现出预测肝纤维化的潜力40。tsRNA的这些特征为MAFLD的早期预警和严重程度评估提供了新视角。尽管tsRNA在MAFLD中的诊断价值和应用前景已初步显现,但其在评估MAFLD进展和预后方面的具体作用及其调控机制仍需更广泛的研究和验证。

自噬机制在维持细胞内蛋白质平衡和能量稳态中发挥核心作用,尤其在肝脏这一代谢中枢中的作用尤为突出。尽管目前tsRNA调控自噬的具体机制尚未完全阐明,但已有研究表明,tsRNA可通过调控自噬过程,影响肝脏代谢稳态、抗氧化应激及炎症性损伤。例如,tRF-3001b通过靶向并抑制自噬相关基因Prkaa1的表达,加剧MAFLD的发展;而沉默tRF-3001b可增强自噬活性,减少肝脂质沉积,从而延缓MAFLD的进展41。另有研究发现,蓝莓单体TEC可通过上调tRF-47-58ZZJQJYSWRYVMMV5BO(tRF-47)的表达激活自噬,抑制细胞死亡和炎症介质的释放,从而发挥治疗非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)的作用,表明TEC可能是一种具有潜力的NASH治疗药物42。综上所述,通过调控tsRNA的表达来调节自噬可能是治疗MAFLD的新靶点,但其具体机制仍需进一步深入研究。

3.2 tsRNA与肝癌

肝癌是多种慢性肝病进展的终末阶段,在全球范围内具有高发病率和高死亡率,目前成功治愈进展期肝癌患者仍面临巨大挑战43。因此,探索肝癌的早期诊断方法、预后评估手段以及有效的治疗策略具有重要意义。近期研究聚焦于tsRNA在肝癌诊断、预后分析和治疗策略中的潜在应用价值44

研究表明,tsRNA在HCC患者与正常对照之间的表达存在显著差异,提示其作为肝癌诊断新型生物标志物的潜力。具体而言,HCC患者血浆外泌体中tsRNA水平显著升高,尤其是tRNA-val tac-3、tRNA-GlyTCC-5、tRNA-ValAAC-5和tRNA-GluCTC-5的表达水平显著高于健康对照组45。此外,tRF-40-EFOK8YR951K36D26、tRF-34-QNR8VP94FQFY1Q、tRF-32-79mp9NH57SJ和tRF-31-87R8WP9N1EWJ0在HCC患者血浆外泌体中也呈现表达上调46。值得注意的是,tRF-Gln-TTG-006能够以高灵敏度(80.4%)和高特异度(79.4%)区分HCC患者与健康受试者,即使在早期(Ⅰ期)也表现出79.0%的灵敏度和74.8%的特异度47,显示了其在肝癌早期诊断中的巨大潜力。

tRF-39-8HM2OSRNLKSEKH9在HCC细胞、血清和组织中高度表达,可能通过与下游mRNA靶向相互作用发挥致癌作用。其表达水平不仅与肿瘤大小呈正相关,过表达还可加速癌细胞的迁移。因此,tRF-39-8HM2OSRN‑LKSEKH9的表达与临床病理特征之间的关联性提示其在HCC预后评估中具有重要价值48。相比之下,ts-N22是一种在HCC中具有保护作用的tsRNA,通过调控肿瘤抑制因子hsa-miR-33a的表达改善HCC的不良预后。表达ts-N22的患者生存率显著提高,此外,ts-N22还可通过调节miR-33a-5p干扰HCC细胞对顺铂的耐药性,从而改善肝癌的治疗效果44。上述研究表明,tsRNA在HCC的预后评估中展现出重要的应用价值,为HCC的临床管理提供了新的视角和策略。

Gly-tRF通过负调节NDFIP2(Nedd4家族相互作用蛋白2)和激活AKT信号通路来调节HCC细胞的迁移及LCSC(肝癌干细胞)样特性,从而促进肝癌的恶化和转移,而NDFIP2的过表达削弱了Gly-tRF对LCSC样细胞球形成和HCC细胞迁移的促进作用,这可能成为HCC的潜在治疗靶点49。另一研究发现抑制LeuCAG3'tsRNA的表达使特异性小核糖体蛋白RPS28表达降低,进而破坏18S rRNA成熟并最终诱导癌细胞凋亡,在HCC进程中发挥重要作用50。研究亦证实5'-tiRNA-Gln通过结合eIF4A-Ⅰ导致翻译的部分抑制,使相关蛋白包括ARAF、MEK1/2和STAT3受抑制,与HCC进展相关的信号通路受损,从而起到阻止HCC进展的作用25。tsRNA在HCC的治疗方面具有广阔的应用前景,为HCC的治疗提供了创新思路和策略。

3.3 tsRNA与其他肝病

ACLF是慢性肝病急剧恶化的一种严重临床表现,其特点为多器官功能衰竭及极高的短期死亡风险。HBV感染是慢性肝病最常见的病因,而HBV再激活是ACLF最常见的诱发因素51。在诊断方面,tsRNA-20与tsRNA-46的诊断效能初步显现,可能成为HBV-ACLF早期诊断的潜在生物标志物,为疾病预警提供了新的可能性52。在治疗策略上,tRF-Gln-CTG-026(tRF-1)不仅可加速受损肝细胞的修复,改善肝损伤,还能够在细胞再生层面发挥作用,刺激损伤后的细胞增殖,加快肝组织再生,遏制病情的进展,为ACLF的治疗开辟了新的路径53

尽管病毒性肝炎的发病率有所下降,但HBV或HCV的持续感染仍是全球肝硬化和HCC发病的重要原因1。研究发现,在HBV和HCV感染的肝组织中,5'tRH Val和5'tRH Gly的表达显著升高,然而在相应的癌组织中5′tRH的丰度反而降低,提示5'tRH在病毒性肝炎中的作用值得进一步研究54。肝纤维化作为各类肝脏疾病演进的共同病理阶段,其与tsRNA之间的关联性目前仍是研究领域中的空白。鉴于tsRNA在肝病诊疗中的潜在作用,积极填补这一空白不仅将深化对肝纤维化机制的理解,也可能为肝病的早期诊断与治疗策略提供新的线索。tsRNA在肝脏疾病中的表达及临床意义详见表2

4 小结与展望

tsRNA是一类新型的非编码小RNA,广泛存在于人体内,具有参与表观遗传调控、基因表达调节、蛋白质翻译调控等多种生物学功能。其在作为非侵入性生物标志物方面展现出巨大潜力,可为肝脏疾病的早期诊断和预后判断提供新型生物标志物。同时,调控tsRNA的表达有望成为治疗肝脏疾病的新策略。然而,tsRNA作为肝脏疾病的诊断标志物和治疗靶点应用于临床仍面临诸多挑战,需要进一步的基础研究和临床实践验证。

参考文献

[1]

SARIN SK, KUMAR M, ESLAM M, et al. Liver diseases in the Asia-Pacific Region: A Lancet Gastroenterology & Hepatology Commission[J]. Lancet Gastroenterol Hepatol, 2020, 5(2): 167-228. DOI: 10.1016/S2468-1253(19)30342-5 .

[2]

LIU ZQ, LIN CQ, MAO XH, et al. Changing prevalence of chronic hepatitis B virus infection in China between 1973 and 2021: A systematic literature review and meta-analysis of 3 740 studies and 231 million people[J]. Gut, 2023, 72(12): 2354-2363. DOI: 10.1136/gutjnl-2023-330691 .

[3]

ZHOU JH, ZHOU F, WANG WX, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71(5): 1851-1864. DOI: 10.1002/hep.31150 .

[4]

YANG B, ZHANG R. Progress on the treatment of metabolic associated fatty liver disease[J/CD]. Chin J Liver Dis (Electronic Edition), 2024, 16(4): 25-30. DOI: 10.3969/j.issn.1674-7380.2024.04.00 .

[5]

杨彬, 张瑞. 代谢相关脂肪性肝病治疗进展[J/CD]. 中国肝脏病杂志(电子版), 2024, 16(4): 25-30. DOI: 10.3969/j.issn.1674-7380.2024.04.00 .

[6]

ZHANG F, JU JM, DIAO HT, et al. Innovative pharmacotherapy for hepatic metabolic and chronic inflammatory diseases in China[J]. Br J Pharmacol, 2024. DOI: 10.1111/bph.16342 . [Online ahead of print]

[7]

TSONEVA DK, IVANOV MN, VINCIGUERRA M. Liquid liver biopsy for disease diagnosis and prognosis[J]. J Clin Transl Hepatol, 2023, 11(7): 1520-1541. DOI: 10.14218/jcth.2023.00040 .

[8]

DU J, HUANG TY, ZHENG Z, et al. Biological function and clinical application prospect of tsRNAs in digestive system biology and pathology[J]. Cell Commun Signal, 2023, 21(1): 302. DOI: 10.1186/s12964-023-01341-8 .

[9]

XIE YY, YAO LP, YU XC, et al. Action mechanisms and research methods of tRNA-derived small RNAs[J]. Signal Transduct Target Ther, 2020, 5(1): 109. DOI: 10.1038/s41392-020-00217-4 .

[10]

KATSARAKI K, ARTEMAKI PI, PAPAGEORGIOU SG, et al. Identification of a novel, internal tRNA-derived RNA fragment as a new prognostic and screening biomarker in chronic lymphocytic leukemia, using an innovative quantitative real-time PCR assay[J]. Leuk Res, 2019, 87: 106234. DOI: 10.1016/j.leukres.2019.106234 .

[11]

PENG RF, SANTOS HJ, NOZAKI T. Transfer RNA-derived small RNAs in the pathogenesis of parasitic protozoa[J]. Genes (Basel), 2022, 13(2): 286. DOI: 10.3390/genes13020286 .

[12]

YU XC, XIE YY, ZHANG SS, et al. tRNA-derived fragments: Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections[J]. Theranostics, 2021, 11(1): 461-469. DOI: 10.7150/thno.51963 .

[13]

YANG N, LI RJ, LIU RA, et al. The emerging function and promise of tRNA-derived small RNAs in cancer[J]. J Cancer, 2024, 15(6): 1642-1656. DOI: 10.7150/jca.89219 .

[14]

LIAO JY, GUO YH, ZHENG LL, et al. Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote Giardia Lamblia[J]. Proc Natl Acad Sci U S A, 2014, 111(39): 14159-14164. DOI: 10.1073/pnas.1414394111 .

[15]

BALATTI V, NIGITA G, VENEZIANO D, et al. tsRNA signatures in cancer[J]. Proc Natl Acad Sci U S A, 2017, 114(30): 8071-8076. DOI: 10.1073/pnas.1706908114 .

[16]

ZHANG X, HE X, LIU C, et al. IL-4 inhibits the biogenesis of an epigenetically suppressive PIWI-interacting RNA to upregulate CD1a molecules on monocytes/dendritic cells[J]. J Immunol, 2016, 196(4): 1591-1603. DOI: 10.4049/jimmunol.1500805 .

[17]

TONG LH, ZHANG WX, QU BC, et al. The tRNA-derived fragment-3017A promotes metastasis by inhibiting NELL2 in human gastric cancer[J]. Front Oncol, 2021, 10: 570916. DOI: 10.3389/fonc.2020.570916 .

[18]

ZHANG SS, GU YQ, GE JX, et al. tRF-33-P4R8YP9LON4VDP inhibits gastric cancer progression via modulating STAT3 signaling pathway in an AGO2-dependent manner[J]. Oncogene, 2024, 43(28): 2160-2171. DOI: 10.1038/s41388-024-03062-9 .

[19]

GOODARZI H, LIU XH, NGUYEN HCB, et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement[J]. Cell, 2015, 161(4): 790-802. DOI: 10.1016/j.cell.2015.02.053 .

[20]

FALCONI M, GIANGROSSI M, ZABALETA ME, et al. A novel 3'- tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin[J]. FASEB J, 2019, 33(12): 13228-13240. DOI: 10.1096/fj.201900382rr .

[21]

CHEN Q, YAN MH, CAO ZH, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder[J]. Science, 2016, 351(6271): 397-400. DOI: 10.1126/science.aad7977 .

[22]

SARKER G, SUN WF, ROSENKRANZ D, et al. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs[J]. Proc Natl Acad Sci USA, 2019, 116(21): 10547-10556. DOI: 10.1073/pnas.1820810116 .

[23]

ZHANG YF, ZHANG XD, SHI JC, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs[J]. Nat Cell Biol, 2018, 20(5): 535-540. DOI: 10.1038/s41556-018-0087-2 .

[24]

YU T, XIE YM, TANG C, et al. Dnmt2-null sperm block maternal transmission of a paramutant phenotype[J]. Biol Reprod, 2021, 105(3): 603-612. DOI: 10.1093/biolre/ioab086 .

[25]

SHI JC, ZHANG YF, ZHOU T, et al. tsRNAs: The Swiss army knife for translational regulation[J]. Trends Biochem Sci, 2019, 44(3): 185-189. DOI: 10.1016/j.tibs.2018.09.007 .

[26]

WU CD, LIU DK, ZHANG LF, et al. 5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I[J]. Front Med, 2023, 17(3): 476-492. DOI: 10.1007/s11684-022-0966-6 .

[27]

GEBETSBERGER J, WYSS L, MLECZKO AM, et al. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress[J]. RNA Biol, 2017, 14(10): 1364-1373. DOI: 10.1080/15476286.2016.1257470 .

[28]

MLECZKO AM, CELICHOWSKI P, BĄKOWSKA-ŻYWICKA K. Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyl-transfer RNA synthetases[J]. Biochim Biophys Acta Gene Regul Mech, 2018: S1874-9399(17)30380-2. DOI: 10.1016/j.bbagrm.2018.06.001 .

[29]

FRICKER R, BROGLI R, LUIDALEPP H, et al. A tRNA half modulates translation as stress response in Trypanosoma brucei[J]. Nat Commun, 2019, 10(1): 118. DOI: 10.1038/s41467-018-07949-6 .

[30]

KIM HK, XU JP, CHU K, et al. A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice[J]. Cell Rep, 2019, 29(12): 3816-3824. DOI: 10.1016/j.celrep.2019.11.062 .

[31]

SAIKIA M, JOBAVA R, PARISIEN M, et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress[J]. Mol Cell Biol, 2014, 34(13): 2450-2463. DOI: 10.1128/MCB.00136-14 .

[32]

KEAM SP, SOBALA A, HAVE S TEN, et al. tRNA-derived RNA fragments associate with human multisynthetase complex (MSC) and modulate ribosomal protein translation[J]. J Proteome Res, 2017, 16(2): 413-420. DOI: 10.1021/acs.jproteome.6b00267 .

[33]

DI FAZIO A, GULLEROVA M. An old friend with a new face: tRNA-derived small RNAs with big regulatory potential in cancer biology[J]. Br J Cancer, 2023, 128(9): 1625-1635. DOI: 10.1038/s41416-023-02191-4 .

[34]

BRAICU C, ZIMTA AA, HARANGUS A, et al. The function of non-coding RNAs in lung cancer tumorigenesis[J]. Cancers (Basel), 2019, 11(5): 605. DOI: 10.3390/cancers11050605 .

[35]

SHI JC, ZHANG YF, TAN DM, et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications[J]. Nat Cell Biol, 2021, 23(4): 424-436. DOI: 10.1038/s41556-021-00652-7 .

[36]

RUZMAN L, MIKOLASEVIC I, BARABA DEKANIC K, et al. Advances in diagnosis of chronic liver diseases in pediatric patients[J]. World J Pediatr, 2018, 14(6): 541-547. DOI: 10.1007/s12519-018-0197-8 .

[37]

SINGH S, OSNA NA, KHARBANDA KK. Treatment options for alcoholic and non-alcoholic fatty liver disease: A review[J]. World J Gastroenterol, 2017, 23(36): 6549-6570. DOI: 10.3748/wjg.v23.i36.6549 .

[38]

ZHANG PY, WANG WY, MAO M, et al. Similarities and differences: A comparative review of the molecular mechanisms and effectors of NAFLD and AFLD[J]. Front Physiol, 2021, 12: 710285. DOI: 10.3389/fphys.2021.710285 .

[39]

ZHONG FD, HU ZG, JIANG KQ, et al. Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis[J]. Cell Res, 2019, 29(7): 548-561. DOI: 10.1038/s41422-019-0175-2 .

[40]

HUANG P, TU B, LIAO HJ, et al. Elevation of plasma tRNA fragments as a promising biomarker for liver fibrosis in nonalcoholic fatty liver disease[J]. Sci Rep, 2021, 11(1): 5886. DOI: 10.1038/s41598-021-85421-0 .

[41]

KIM Y, LEE DH, PARK SH, et al. The interplay of microRNAs and transcription factors in autophagy regulation in nonalcoholic fatty liver disease[J]. Exp Mol Med, 2021, 53(4): 548-559. DOI: 10.1038/s12276-021-00611-0 .

[42]

ZHU JJ, CHENG ML, ZHAO XK. A tRNA-derived fragment (tRF-3001b) aggravates the development of nonalcoholic fatty liver disease by inhibiting autophagy[J]. Life Sci, 2020, 257: 118125. DOI: 10.1016/j.lfs.2020.118125 .

[43]

ZHU JJ, WEN Y, ZHANG QL, et al. The monomer TEC of blueberry improves NASH by augmenting tRF-47-mediated autophagy/pyroptosis signaling pathway[J]. J Transl Med, 2022, 20(1): 128. DOI: 10.1186/s12967-022-03343-5 .

[44]

ANWANWAN D, SINGH SK, SINGH S, et al. Challenges in liver cancer and possible treatment approaches[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188314. DOI: 10.1016/j.bbcan.2019.188314 .

[45]

ZUO Y, CHEN SQ, YAN LL, et al. Development of a tRNA-derived small RNA diagnostic and prognostic signature in liver cancer[J]. Genes Dis, 2021, 9(2): 393-400. DOI: 10.1016/j.gendis.2021.01.006 .

[46]

ZHU L, LI J, GONG YL, et al. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis[J]. Mol Cancer, 2019, 18(1): 74. DOI: 10.1186/s12943-019-1000-8 .

[47]

WANG Y, WENG QY, GE JX, et al. tRNA-derived small RNAs: Mechanisms and potential roles in cancers[J]. Genes Dis, 2022, 9(6): 1431-1442. DOI: 10.1016/j.gendis.2021.12.009 .

[48]

ZHAN SB, YANG P, ZHOU SK, et al. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis[J]. Front Med, 2022, 16(2): 216-226. DOI: 10.1007/s11684-022-0920-7 .

[49]

XU TX, YUAN J, SONG F, et al. Exploring the functional role of tRF-39-8HM2OSRNLNKSEKH9 in hepatocellular carcinoma[J]. Heliyon, 2024, 10(5): e27153. DOI: 10.1016/j.heliyon.2024.e27153 .

[50]

ZHOU YQ, HU JJ, LIU L, et al. Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2[J]. Cancer Cell Int, 2021, 21(1): 502. DOI: 10.1186/s12935-021-02102-8 .

[51]

KIM HK, FUCHS G, WANG SC, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis[J]. Nature, 2017, 552(7683): 57-62. DOI: 10.1038/nature25005 .

[52]

LUO JJ, LI JQ, LI P, et al. Acute-on-chronic liver failure: Far to go-a review[J]. Crit Care, 2023, 27(1): 259. DOI: 10.1186/s13054-023-04540-4 .

[53]

XU WL, YU MX, WU YK, et al. Plasma-derived exosomal sncRNA as a promising diagnostic biomarker for early detection of HBV-related acute-on-chronic liver failure[J]. Front Cell Infect Microbiol, 2022, 12: 923300. DOI: 10.3389/fcimb.2022.923300 .

[54]

YING SY, LI PC, WANG JQ, et al. tRF-Gln-CTG-026 ameliorates liver injury by alleviating global protein synthesis[J]. Signal Transduct Target Ther, 2023, 8(1): 144. DOI: 10.1038/s41392-023-01351-5 .

[55]

SELITSKY SR, BARAN-GALE J, HONDA M, et al. Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C[J]. Sci Rep, 2015, 5: 7675. DOI: 10.1038/srep07675 .

基金资助

AI Summary AI Mindmap
PDF (1886KB)

326

访问

0

被引

详细

导航
相关文章

AI思维导图

/