吲哚菁绿荧光显像技术在胆道闭锁中的应用

李翰林 ,  何钰铭 ,  罗子懿 ,  徐晓钢

临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1235 -1240.

PDF (643KB)
临床肝胆病杂志 ›› 2025, Vol. 41 ›› Issue (06) : 1235 -1240. DOI: 10.12449/JCH250635
综述

吲哚菁绿荧光显像技术在胆道闭锁中的应用

作者信息 +

Application of indocyanine green fluorescence imaging technology in biliary atresia

Author information +
文章历史 +
PDF (657K)

摘要

胆道闭锁的特征是进行性炎症和胆管纤维阻塞,最终导致胆汁淤积性肝硬化。Kasai手术是治疗胆道闭锁的标准术式,早期诊断是影响胆道闭锁预后的关键因素。吲哚菁绿是一种近红外光敏染料,静脉注射后可被肝细胞有效地选择性吸收,以游离形式经胆汁分泌入肠道随粪便排出,具有极高的安全性。此外,吲哚菁绿可在近红外光下发出荧光,这些荧光可以被摄像仪器捕获并转换为视觉图像,吲哚菁绿荧光显像技术可以实时反映术中情况,显著提高手术成功率。本文对近年来吲哚菁绿在术前早期诊断、术中造影和术后肝功能评估中的应用进展进行综述。

Abstract

Biliary atresia (BA) is characterized by progressive inflammation and fibrous obstruction of bile ducts, ultimately leading to cholestatic liver cirrhosis. Kasai surgery is the standard procedure for the treatment of BA, and early diagnosis is a key influencing factor for the prognosis of BA. Indocyanine green (ICG) is a near-infrared photosensitive dye that is efficiently and selectively absorbed by hepatocytes after intravenous injection, and it enters the intestine via bile and is excreted with the feces in the free form, with a favorable safety profile. In addition, ICG can emit fluorescence under near-infrared light, which can be captured by camera instruments and converted into visual images, and ICG fluorescence imaging technology can reflect the intraoperative situation in real time and significantly improve the success rate of the surgical procedure. This article reviews the advances in the application of ICG in early preoperative diagnosis, intraoperative imaging, and postoperative liver function assessment in recent years.

关键词

胆道闭锁 / 吲哚花青绿 / 早期诊断

Key words

Biliary Atresia / Indocyanine Green / Early Diagnosis

引用本文

引用格式 ▾
李翰林,何钰铭,罗子懿,徐晓钢. 吲哚菁绿荧光显像技术在胆道闭锁中的应用[J]. 临床肝胆病杂志, 2025, 41(06): 1235-1240 DOI:10.12449/JCH250635

登录浏览全文

4963

注册一个新账户 忘记密码

吲哚菁绿(indocyanine green, ICG)是一种近红外可见的荧光三碳菁染料,1956年由美国食品和药物管理局批准使用。它是一种两性、无毒、水溶性阴离子荧光团,分子量为776 Da1。ICG具备不参与肝肠循环、不参与淋巴循环、不被肝外组织所吸收、不从其他肝外器官代谢、不累积于皮肤、不参与体内生物转化、无化学变化、无毒副作用等特点2。其在血液中的半衰期为2.5~3 min。在外周静脉注射后,ICG与血浆蛋白迅速结合,并被肝实质细胞全部从血浆中吸收,然后被完全排泄到胆汁中3,随胆汁排入肠道,以粪便的形式排出体外2。ICG可被近红外光激发产生荧光,信号峰值约在830 nm处,允许穿透高达10 mm的组织深度3
ICG荧光显像技术,通过静脉注射ICG,利用近红外光照射产生荧光,经摄像机捕捉及计算机图像处理,实现对血管、肝脏、胆管树等清晰、准确的显影。该技术已被应用于术中胆管造影、肝切除术、肝癌的诊断与治疗、肝功能动态评估等领域4-8
胆道闭锁是一种累及胆道的进行性破坏性闭塞性疾病,以肝内及肝外胆管进行性炎症和纤维化为特征,严重威胁患儿生命。若不及时治疗,晚期患儿将会出现肝硬化、门静脉高压、肝衰竭等并发症,多数在2岁前死亡9。胆道闭锁根据肝外胆管闭塞的部位分型,Ⅰ型:胆总管闭锁(5%);Ⅱ型:肝管闭锁(3%);Ⅲ型:肝门部闭锁(92%)10。临床上,胆道闭锁患儿通常在出生后不久或新生儿期即表现出黄疸、尿色深、大便颜色苍白、肝脾肿大、营养及发育不良等症状。
胆道闭锁的主要治疗方法是Kasai手术,该手术是一种姑息性外科手术,尽管术后恢复了胆汁引流,但长期成功率(定义为不需要肝移植而保留肝功能)只有25%~40%11,部分患儿术后并没有恢复引流,需接受肝移植手术9。早期诊断胆道闭锁对其成功治疗极为关键,手术探查和术中胆道造影是诊断胆道闭锁的金标准。
ICG在胆道闭锁中的应用包括术中ICG荧光胆管造影12、实时量化ICG荧光强度(indocyanine green fluorescence intensity,ICG-FI)以评估胆道闭锁中肝门静脉纤维组织的解剖程度、术后ICG的代谢时间与预后的关系等13

1 ICG荧光显像技术应用于胆道闭锁患儿术前诊断与评估

1.1 术前诊断

目前ICG在术前的应用主要是收集粪便,观察注射ICG后的术前粪便是否有荧光显像,并与术后粪便的荧光显像进行比较,以证明Kasai手术可恢复肝脏胆汁引流。Hirayama等14在术前24 h静脉注射ICG(0.1 mg/kg)进行术中显影和验证胆汁引流恢复,但由于其收集的是注射ICG前的粪便,因此结果并不完整。最新一项前瞻性单中心队列研究给予黄疸患儿静脉注射ICG,并观察24 h后尿布中粪便荧光的有无,初步诊断胆道闭锁15。结果显示,7例胆道闭锁患儿中有6例粪便未检测到荧光,准确率达97%,有效筛查出因胆道闭锁引起黄疸的患儿。但该研究选取样本较少,缺乏统计学意义。

然而,在Zhao等13的研究中,9例Ⅲ型胆道闭锁患者中有7例患者术前至少12 h接受ICG注射(0.05 mg/kg),6例在注射后12 h收集的术前粪便中检测到荧光。这表明胆道闭锁可能是由进行性炎症引起的肝外胆道纤维化过程,纤维组织中仍有微胆管分泌含ICG的胆汁进入肠道。徐琛等16在术前24 h注射ICG(0.1 mg/kg)并收集36例胆道闭锁患儿术前大便,其中有32例大便荧光显像。对此,研究给出3个可能的解释:(1)Ⅲ型胆道闭锁患儿肝内外胆道并非完全闭锁;(2)ICG可能经淋巴循环代谢;(3)ICG可能有肝肠循环途径或其他代谢途径。

胆道闭锁的类型和患儿的病程是影响术前静脉注射ICG诊断的关键因素。能否利用术前静脉注射ICG并通过观察患儿的粪便有无荧光来初步诊断胆道闭锁,需多中心研究来明确其可行性及适用范围。

1.2 术前评估

ICG荧光显像技术不仅用于术前胆道闭锁的诊断,还可以用于Kasai术前评估,以决定是否适合进行Kasai手术。该技术可用于术前评估肝脏的血流灌注和胆汁排泄功能,为手术决策提供信息。

ICG清除试验通过静脉注射ICG,ICG被肝脏选择性吸收并清除,在肝功能正常的情况下,大约97%的染料在20 min内排泄到胆汁中,并用经皮传感器测量ICG浓度17。ICG清除试验是术前评估肝功能和判断肝硬化程度的常用方法,其中ICG-R15(ICG清除试验15 min滞留率)及ICG-PDR(ICG血浆清除速率)是关键指标。这些指标在成人肝硬化程度评估中具有重要预测价值18-19,同样有望用于评估胆道闭锁患儿术前肝硬化程度。

2 ICG荧光显像技术在胆道闭锁术中的应用

近年来,ICG近红外荧光造影已广泛应用于评估肝功能、肝硬化程度等肝胆外科领域20-22。Kasai手术可以提高患儿自体肝的存活率,并为后续治疗争取时间。Davenport等23研究表明,接受Kasai手术的胆道闭锁患儿5年和10年自体肝脏存活率分别为46%和40%。此外,手术时间越早,胆汁引流效果越好24-25。因此,早期进行成功的Kasai手术是治疗胆道闭锁的关键。但是,Kasai手术的成功不仅依赖于外科医生的能力及经验,还受到胆道闭锁患者肝脏普遍肿大的影响,故而增加了腹腔镜探查和手术操作的难度26

2.1 ICG的使用途径

ICG有静脉注射和胆囊注射两种方式,各有其优势。静脉注射不仅能避免胆管损伤,而且操作简便、安全性高,适用于术前了解胆汁引流情况及肝功能、术中造影和术后肝功能评估等多种情况。对于已经进行胆道引流的患者,胆囊注射也不失为一种选择3。此外,ICG也被用于孕妇,尽管其可通过胎盘缓慢转移给胎儿,但研究显示对胎儿的影响极小27

2.2 ICG的使用剂量及给药时间

术中ICG的使用剂量尚无统一标准,与患者的肝脏情况、门静脉高压和肝纤维性梗阻等因素密切相关。大多数研究使用的剂量在0.01~0.5 mg/kg的标准临床剂量内,或使用固定的2.5 mg ICG,均能获得满意的显影效果,且低于毒性水平28。例如,Zhao等29在术前3~7 h和12~17 h注射0.05 mg/kg ICG,而Nielsen等30采用0.25 mg/kg的剂量,均取得较高的造影成功率。《吲哚菁绿荧光染色在腹腔镜肝切除术中应用的专家共识》31建议,胆管成像采用外周静脉注射或门静脉注射2.5 mg/mL ICG,首选溶剂为灭菌注射用水,以便于ICG分子的聚集。

ICG的给药时间同样缺乏统一标准,注射时间过晚会导致肝脏背景荧光过强,难以区分肝外胆管。Baiocchi等32发现,术前3~5 h注射能提高分辨率,增强胆管与肝实质荧光的对比。由于胆道闭锁患儿难以排出胆汁,部分学者建议术前24 h注射ICG,以降低背景肝脏的荧光强度,增强荧光对比,便于观察胆道结构及变异程度1433。肝硬化患者排泄ICG至胆管的时间大多超过24 h34,因此可根据病情适当延长ICG注射时间以获得更好的视野。

为了在手术中获得良好的视野,需要进一步探索不同情况患者的使用剂量和给药时间,尤其在合并肝脏基础疾病时,ICG代谢速率变化可能影响荧光成像。在达到目标区域的染色效果后,应尽量减少ICG的使用剂量,避免浸染效应35

在胆道闭锁患儿中,ICG主要用于术中胆道造影和肝功能评估。术中胆道造影侧重于增强胆道结构的清晰化和可视化,常用较低剂量,如术前12 h静脉注射0.05 mg/kg ICG或术前24 h静脉注射0.1 mg/kg ICG13-16。肝功能评估则侧重于量化评估肝脏代谢能力,通常使用较高剂量,术前及术后ICG清除试验通常采取0.5 mg/kg静脉注射,但会根据肝功能情况进行调整,以便准确评估。

目前,ICG在胆道闭锁患儿中的应用缺乏统一标准,不同方案的显影效果、肝功能评估准确性以及不良反应等方面的临床证据不足。

2.3 ICG荧光显像技术在术中的应用

2.3.1 术中胆道造影

ICG荧光显像技术应用于术中肝外胆管造影,能有效地识别胆道解剖结构,提升外科医生的技术和决策能力36。该技术可实时检测胆汁渗透情况,通过检查渗出液中的荧光来判断胆汁有无排出,帮助外科医生确定手术的切口和吻合位置14。Yanagi等33的回顾性研究比较了在Kasai手术中使用ICG荧光显像技术造影的10例患儿与未使用的35例患儿,结果显示前者术后退黄比例(100%)显著高于后者(65.7%),但两组术后高胆红素血症正常化的时间无显著差异。

随访接受ICG荧光显像技术造影及Kasai手术的患儿,发现胆道损伤发生率低,术中平均出血量约50 mL,术后平均住院时间1周,无胆漏、腹腔感染及休克等并发症,进一步证明ICG荧光显像技术的应用对于患儿预后有积极影响37

2.3.2 术中肝门区荧光显像

在对肝门区荧光组织的研究中,Hirayama等14根据形状、大小和密度差异,将其分为弥漫性弱荧光、弥漫性强荧光和点状荧光。弥漫性荧光的强弱有助于预测患者的预后,较弱的荧光通常表示术后胆汁引流良好和黄疸轻或无,荧光强度高可能因肝门纤维板块封闭程度高或其他原因导致胆汁排泄减少,点状荧光则提示微胆管聚集形成胆汁淤积和一定程度的肝损伤。

Yanagi等33将荧光分为弥漫型和局灶型。弥漫型荧光与肝门纤维板块的位置接近,能提供更佳的视野。组织病理学分析显示,不同类型的荧光模式反映了微胆管的结构情况。局灶型荧光点的患儿微胆管宽度往往小于200 μm,肉眼难以观察。

不同类型的荧光强度和分布,能反映胆汁引流、微胆管情况以及肝损伤程度,从而辅助判断预后。此外,荧光显像还能帮助外科医生更准确地确定肝门与小肠的吻合部位,避免损伤肝门微胆管,改善肝门纤维板块的切除效果,从而提高术后黄疸清除速率38

2.3.3 术中造影技术对比

在胆道闭锁术中,传统的胆囊造影方法如胆囊注射造影剂或放射照相胆管造影术,存在成像困难、稳定性差、可能损伤胆管等问题39-40。Hirayama等14指出,磁共振胰胆管成像(MRCP)和计算机断层扫描(CT)因灵敏度不足无法证实胆汁排泄而存在局限。手术探查胆道造影极易损伤胆道树,可能导致术后纤维化41。此外,该有创检查的并发症多42,严重时可能需要二次手术,影响预后。术后炎症反应及病毒感染也可能间接导致胆道损伤,引起并发症,对患儿的健康构成严重威胁。

相比之下,ICG荧光显像技术作为一种操作简单的无创实时方法,能可视化胆道树的解剖结构,减少胆管损伤及缩短手术时间,降低并发症的风险,提高手术的安全性并改善预后43,且在检测基本胆道结构上具有明显优势44-45

3 ICG荧光显像技术应用于术后功能评估

3.1 ICG荧光显像特点与预后评估

3.1.1 术中ICG显像特点与预后关系

Kasai术中肝脏ICG显像特点与胆道闭锁患儿早期预后的关系尚未明确。徐琛等16研究发现,Ⅲ型胆道闭锁患儿在Kasai术中胆汁排泄缓慢与黄疸消退延长有关,但ICG检测肝门胆汁排泄速度、胆汁分布及瞬时胆汁流量与术后生存情况无显著关联。未来研究可尝试将粪便ICG荧光显像技术与术中小胆管荧光显像情况结合,探究ICG显像情况是否与自体肝生存率有关,以改善手术预后。

3.1.2 术中ICG-FI与预后关系

Zhao等13研究表明,术中肝门静脉纤维组织和肝脏的ICG-FI变化,可用于评估胆道闭锁患儿肝门静脉纤维组织解剖程度及胆汁流量。根据术中ICG荧光导航,可量化ICG-FI,更准确评估胆汁流量。连续检测患儿术后含ICG粪便荧光完全消失时间,有助于评估胆汁引流的效果。但由于样本量与随访时间不足,目前手术预后与ICG-FI变化、术后ICG代谢时间的关联并不显著。因此,需要延长随访时间,并不断扩大样本量,以得出更准确的相关性结论13

3.2 ICG清除试验在术后肝功能评估中的应用

胆道闭锁患儿术后肝功能情况是决定其预后的关键因素。胆管阻塞导致胆汁长期淤积在肝脏,若不及时治疗,可能发展为肝硬化。ICG清除试验是一种广泛使用的肝功能评估工具。Kubota等46通过将同龄正常婴儿和儿童与Kasai术后胆道闭锁患儿进行比较,确定了正常ICG-K值(ICG消除速率常数)的范围,并发现术后ICG-K值正常的患儿肝功能损伤的比例显著低于ICG-K值低的患儿。ICG-K值已被证实是胆道闭锁患者术后肝功能的可靠指标46,能客观反映肝功能受损程度,为患儿的预后提供指导。

胆道闭锁的类型不同,术后的反应、清除黄疸的效果及预后也存在显著差异,对于肝移植的需求也不尽相同。未来研究可探究ICG荧光显像在不同胆道闭锁类型中的表现差异,并评估这些差异与患者预后的相关性,探索ICG是否能够用于评估肝移植。

4 小结与展望

ICG荧光显像技术在胆道闭锁患儿胆道造影和肝功能评估等领域显示出显著优势,已被广泛应用于临床。传统术中胆管造影是将造影剂注入胆管系统以提供胆管的术中透视成像47。ICG荧光显像技术在术中胆道造影方面更安全、高效、实时,能有效识别胆道闭锁肝外胆道。

但ICG在小儿外科的临床应用仍处于早期阶段48,其仍面临挑战。(1)穿透性差:组织穿透能力有限,ICG荧光信号仅能穿透1 cm的肝实质3449。(2)敏感性低:尽管ICG荧光显像技术特异性高,但其敏感性较低12,且在肥胖及有炎症产生的患者中显影有一定偏差50。它对Calot三角周围被厚结缔组织覆盖的肝外胆管进行造影的能力弱51,对深部胆管进行造影受限,尤其在肥胖和胆囊炎患者中52。(3)时间和剂量未明确:目前尚需临床试验确定最适时间和剂量,以减少术后并发症。

尽管存在局限性,ICG在胆道闭锁患儿的诊疗中仍具有广阔的应用前景。(1)早期诊断:胆道闭锁的治疗核心仍是早期诊断和手术。ICG在术前早期诊断中的应用有望为早期发现胆道闭锁患儿提供一种无创的、高特异性及高准确度的方法。(2)术前诊断:目前,ICG用于胆道闭锁术前诊断的研究较少。而早期诊断对于提高Kasai术后自体肝生存率至关重要,因此ICG在早期胆道闭锁诊断中的应用潜力值得深入探索。(3)预后研究:深入探索术中ICG影像特点与胆道闭锁预后的关系,期待改善患者预后。

参考文献

[1]

PORCU EP, SALIS A, GAVINI E, et al. Indocyanine green delivery systems for tumour detection and treatments[J]. Biotechnol Adv, 2016, 34(5): 768-789. DOI: 10.1016/j.biotechadv.2016.04.001 .

[2]

CHEN Y, GAO WP, BAI J. Review of indocyanine green in medical imaging applications[J]. Int J Biomed Eng, 2013, 36(5): 289-293, 316. DOI: 10.3760/cma.j.issn.1673-4181.2013.05.009 .

[3]

陈玥, 高卫平, 白净. 吲哚菁绿在影像医学中的应用[J]. 国际生物医学工程杂志, 2013, 36(5): 289-293, 316. DOI: 10.3760/cma.j.issn.1673-4181.2013.05.009 .

[4]

WANG XY, TEH CSC, ISHIZAWA T, et al. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery[J]. Ann Surg, 2021, 274(1): 97-106. DOI: 10.1097/SLA.0000000000004718 .

[5]

LIM SH, TAN HTA, SHELAT VG. Comparison of indocyanine green dye fluorescent cholangiography with intra-operative cholangiography in laparoscopic cholecystectomy: A meta-analysis[J]. Surg Endosc, 2021, 35(4): 1511-1520. DOI: 10.1007/s00464-020-08164-5 .

[6]

CHEN H, WANG YM, XIE ZG, et al. Application effect of ICG fluorescence real-time imaging technology in laparoscopic hepatectomy[J]. Front Oncol, 2022, 12: 819960. DOI: 10.3389/fonc.2022.819960 .

[7]

FELLI E, ISHIZAWA T, CHERKAOUI Z, et al. Laparoscopic anatomical liver resection for malignancies using positive or negative staining technique with intraoperative indocyanine green-fluorescence imaging[J]. HPB (Oxford), 2021, 23(11): 1647-1655. DOI: 10.1016/j.hpb.2021.05.006 .

[8]

Chinese Society of Digital Medicine, Chinese Medical Association; Liver Cancer Committee of Chinese Medical Doctor Association; Clinical Precision Medicine Committee of Chinese Medical Doctor Association, et al. Specifications for the clinical application of indocyanine green fluorescence imaging in the diagnosis and intraoperative navigation of primary liver cancer(2021 edition)[J]. Chin J Pract Surg, 2021, 41(9): 1002-1013, 1032. DOI: 10.19538/j.cjps.issn1005-2208.2021.09.04 .

[9]

中华医学会数字医学分会, 中国医师协会肝癌专业委员会, 中国医师协会精准医学专业委员会, 吲哚菁绿分子荧光影像技术诊断原发性肝癌与术中导航操作诊疗规范(2021版)[J]. 中国实用外科杂志, 2021, 41(9): 1002-1013, 1032. DOI: 10.19538/j.cjps.issn1005-2208.2021.09.04 .

[10]

ALLAIRE M, GOUMARD C, LIM C, et al. New frontiers in liver resection for hepatocellular carcinoma[J]. JHEP Rep, 2020, 2(4): 100134. DOI: 10.1016/j.jhepr.2020.100134 .

[11]

HARTLEY JL, DAVENPORT M, KELLY DA. Biliary atresia[J]. Lancet, 2009, 374(9702): 1704-1713. DOI: 10.1016/S0140-6736(09)60946-6 .

[12]

Section of Hepatobiliary Surgery, Branch of Pediatric Surgery, Chinese Medical Association. Expert consensus on diagnosing and treating cholangitis after Kasai operation for biliary atresia (2022 edition)[J]. Chin J Pediatr Surg, 2022, 43(9): 769-774. DOI: 10.3760/cma.j.cn421158-20220427-00308 .

[13]

中华医学会小儿外科学分会肝胆外科学组. 胆道闭锁Kasai术后胆管炎诊疗专家共识(2022版)[J]. 中华小儿外科杂志, 2022, 43(9): 769-774. DOI: 10.3760/cma.j.cn421158-20220427-00308 .

[14]

WONG KY, CHUNG PY, CHAN IY, et al. Performing Kasai portoenterostomy beyond 60 days of life is not necessarily associated with a worse outcome[J]. J Pediatr Gastroenterol Nutr, 2010, 51(5): 631-634. DOI: 10.1097/MPG.0b013e3181e8e194 .

[15]

SHIROTA C, HINOKI A, TOGAWA T, et al. Intraoperative indocyanine green fluorescence cholangiography can rule out biliary atresia: A preliminary report[J]. Front Pediatr, 2022, 10: 1005879. DOI: 10.3389/fped.2022.1005879 .

[16]

ZHAO JW, ZHANG YN, JIN YY, et al. Exploratory application of indocyanine green quantification in biliary atresia observational study[J]. Photodiagnosis Photodyn Ther, 2022, 39: 102960. DOI: 10.1016/j.pdpdt.2022.102960 .

[17]

HIRAYAMA Y, IINUMA Y, YOKOYAMA N, et al. Near-infrared fluorescence cholangiography with indocyanine green for biliary atresia. Real-time imaging during the Kasai procedure: A pilot study[J]. Pediatr Surg Int, 2015, 31(12): 1177-1182. DOI: 10.1007/s00383-015-3799-4 .

[18]

LIM YZ, MUTORE K, BRADD MV, et al. A pilot study for biliary atresia diagnosis: Fluorescent imaging of indocyanine green in stool[J]. J Pediatr Surg, 2024, 59(7): 1362-1368. DOI: 10.1016/j.jpedsurg.2024.03.039 .

[19]

XU C, TANG Y, ZHENG S, et al. Study of real-time imaging with indocyanine green during hepatoportoenterostomy as a prognostic factor in children with biliary atresia[J]. J Clin Pediatr Surg, 2022, 21(8): 738-745. DOI: 10.3760/cma.j.cn101785-202111058-007 .

[20]

徐琛, 汤悦, 郑珊, Kasai术中肝脏吲哚菁绿显像特点与胆道闭锁患儿早期预后的关系探索[J]. 临床小儿外科杂志, 2022, 21(8): 738-745. DOI: 10.3760/cma.j.cn101785-202111058-007 .

[21]

GRANIERI S, BRACCHETTI G, KERSIK A, et al. Preoperative indocyanine green (ICG) clearance test: Can we really trust it to predict post hepatectomy liver failure? A systematic review of the literature and meta-analysis of diagnostic test accuracy[J]. Photodiagnosis Photodyn Ther, 2022, 40: 103170. DOI: 10.1016/j.pdpdt.2022.103170 .

[22]

HALLE BM, POULSEN TD, PEDERSEN HP. Indocyanine green plasma disappearance rate as dynamic liver function test in critically ill patients[J]. Acta Anaesthesiol Scand, 2014, 58(10): 1214-1219. DOI: 10.1111/aas.12406 .

[23]

LUERKEN L, DOLLINGER M, GOETZ A, et al. Diagnostic accuracy of indocyanine green clearance test for different stages of liver fibrosis and cirrhosis[J]. Diagnostics (Basel), 2023, 13(16): 2663. DOI: 10.3390/diagnostics13162663 .

[24]

KAWASAKI S, SUGIYAMA Y, IGA T, et al. Pharmacokinetic study on the hepatic uptake of indocyanine green in cirrhotic patients[J]. Am J Gastroenterol, 1985, 80(10): 801-806.

[25]

CLEMENTS D, MCMASTER P, ELIAS E. Indocyanine-green clearance and liver transplantation[J]. Lancet, 1989, 1(8645): 1016. DOI: 10.1016/s0140-6736(89)92654-8 .

[26]

Hepatobiliary and Pancreatic Disease Prevention and Control Specialty Society of Chinese Prevention Medicine Association, Hepato-Oncology Branch of China International Exchange and Promotive Association for Medical and Healthcare. Chinese expert consensus on precision guidance technology in diagnosis and treatment of liver tumors(2024 edition)[J]. Chin J Dig Surg, 2024, 23(4): 514-526. DOI: 10.3760/cma.j.cn115610-20240325-00179 .

[27]

中华预防医学会肝胆胰疾病预防与控制专业委员会, 中国医疗保健国际交流促进会肝脏肿瘤学分会. 精准制导技术应用于肝脏肿瘤诊断与治疗中国专家共识(2024版)[J]. 中华消化外科杂志, 2024, 23(4): 514-526. DOI: 10.3760/cma.j.cn115610-20240325-00179 .

[28]

DAVENPORT M, ONG E, SHARIF K, et al. Biliary atresia in England and Wales: Results of centralization and new benchmark[J]. J Pediatr Surg, 2011, 46(9): 1689-1694. DOI: 10.1016/j.jpedsurg.2011.04.013 .

[29]

OKUBO R, NIO M, SASAKI H, et al. Impacts of early Kasai portoenterostomy on short-term and long-term outcomes of biliary atresia[J]. Hepatol Commun, 2020, 5(2): 234-243. DOI: 10.1002/hep4.1615 .

[30]

LI YC, ZHANG MM, PU CL, et al. Survival analysis after Kasai procedure in 132 children with biliary atresia[J]. J Chongqing Med Univ, 2018, 43(1): 72-76. DOI: 10.13406/j.cnki.cyxb.001161 .

[31]

李英存, 张明满, 蒲从伦, 132例胆道闭锁Kasai术后患儿生存率及影响因素分析[J]. 重庆医科大学学报, 2018, 43(1): 72-76. DOI: 10.13406/j.cnki.cyxb.001161 .

[32]

WANG B, FENG Q, YE XS, et al. The experience and technique in laparoscopic portoenterostomy for biliary atresia[J]. J Laparoendosc Adv Surg Tech A, 2014, 24(5): 350-353. DOI: 10.1089/lap.2013.0138 .

[33]

RUBINCHIK-STERN M, SHMUEL M, BAR J, et al. Maternal-fetal transfer of indocyanine green across the perfused human placenta[J]. Reprod Toxicol, 2016, 62: 100-105. DOI: 10.1016/j.reprotox.2016.04.017 .

[34]

CHERRICK GR, STEIN SW, LEEVY CM, et al. Indocyanine green: Observations on its physical properties, plasma decay, and hepatic extraction[J]. J Clin Invest, 1960, 39(4): 592-600. DOI: 10.1172/JCI104072 .

[35]

ZHAO JW, ZHAO Y, ZHANG YN, et al. Preliminary exploration of the efficacy of laparoscopic fluorescence cholangiography (LFC) in the diagnosis of biliary atresia compared with intraoperative cholangiography (IOC)[J]. Photodiagnosis Photodyn Ther, 2023, 41: 103241. DOI: 10.1016/j.pdpdt.2022.103241 .

[36]

NIELSEN J, NERUP N, MØLLER S, et al. Minimally invasive assessment of hepatic function in children with indocyanine green elimination: A validation study[J]. Scand J Gastroenterol, 2019, 54(4): 485-491. DOI: 10.1080/00365521.2019.1591497 .

[37]

Minimally Invasive Surgery Professional Committee of the Chinese Research Hospital Association, Editorial Department of the Journal of Laparoscopic Surgery. Expert consensus on the application of indocyanine green fluorescence staining in laparoscopic liver resection[J].J Laparosc Surg, 2019, 24(5): 388-394. DOI: 10.13499/j.cnki.fqjwkzz.2019.05.388 .

[38]

中国研究型医院学会微创外科学专业委员会, 《腹腔镜外科杂志》编辑部. 吲哚菁绿荧光染色在腹腔镜肝切除术中应用的专家共识[J]. 腹腔镜外科杂志, 2019, 24(5): 388-394. DOI: 10.13499/j.cnki.fqjwkzz.2019.05.388 .

[39]

BAIOCCHI GL, DIANA M, BONI L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: State of the art and future directions[J]. World J Gastroenterol, 2018, 24(27): 2921-2930. DOI: 10.3748/wjg.v24.i27.2921 .

[40]

YANAGI Y, YOSHIMARU K, MATSUURA T, et al. The outcome of real-time evaluation of biliary flow using near-infrared fluorescence cholangiography with Indocyanine green in biliary atresia surgery[J]. J Pediatr Surg, 2019, 54(12): 2574-2578. DOI: 10.1016/j.jpedsurg.2019.08.029 .

[41]

ISHIZAWA T, FUKUSHIMA N, SHIBAHARA J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 2009, 115(11): 2491-2504. DOI: 10.1002/cncr.24291 .

[42]

CHEN JM, PU T, XIE QS, et al. Indocyanine green fluorescence imaging laparoscopic segmental resection of intrahepatic bile duct benign obstruction[J]. Chin J Pract Surg, 2021, 41(4): 419-422. DOI: 10.19538/j.cjps.issn1005-2208.2021.04.16 .

[43]

陈江明, 濮天, 谢青松, 吲哚菁绿荧光导航辅助腹腔镜肝内胆管良性区域梗阻型病变区段肝切除可行性及疗效分析[J]. 中国实用外科杂志, 2021, 41(4): 419-422. DOI: 10.19538/j.cjps.issn1005-2208.2021.04.16 .

[44]

RUNGSAKULKIJ N, THEWMORAKOT S, SURAGUL W, et al. Fluorescence cholangiography enhances surgical residents’ biliary delineation skill for laparoscopic cholecystectomies[J]. World J Gastrointest Surg, 2020, 12(3): 93-103. DOI: 10.4240/wjgs.v12.i3.93 .

[45]

WANG ZQ, YAN L, LI XW, et al. Application of indocyanine green fluorescence cholangiography in difficult laparoscopic cholecystectomy[J]. Chin J Hepatobiliary Surg, 2020, 26(6): 463-466. DOI: 10.3760/cma.j.cn113884-20191224-00422 .

[46]

王自强, 闫凛, 李晓文, 吲哚菁绿荧光胆道造影在困难腹腔镜胆囊切除术中的应用[J]. 中华肝胆外科杂志, 2020, 26(6): 463-466. DOI: 10.3760/cma.j.cn113884-20191224-00422 .

[47]

NIO M, WADA M, SASAKI H, et al. Technical standardization of Kasai portoenterostomy for biliary atresia[J]. J Pediatr Surg, 2016, 51(12): 2105-2108. DOI: 10.1016/j.jpedsurg.2016.09.047 .

[48]

ISHIZAWA T, BANDAI Y, IJICHI M, et al. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy[J]. Br J Surg, 2010, 97(9): 1369-1377. DOI: 10.1002/bjs.7125 .

[49]

ALTMAN RP, ABRAMSON S. Potential errors in the diagnosis and surgical management of neonatal jaundice[J]. J Pediatr Surg, 1985, 20(5): 529-534. DOI: 10.1016/s0022-3468(85)80481-4 .

[50]

BEZERRA JA, WELLS RG, MACK CL, et al. Biliary atresia: Clinical and research challenges for the twenty-first century[J]. Hepatology, 2018, 68(3): 1163-1173. DOI: 10.1002/hep.29905 .

[51]

WANG GX, CHEN W, ZHENG XH, et al. Feasibility of indocyanine green near infrared fluorescence imaging in extrahepatic cholangiography[J]. Pract J Med Pharm, 2019, 36(4): 321-322. DOI: 10.14172/j.issn1671-4008.2019.04.012 .

[52]

王国兴, 陈炜, 郑晓华, 吲哚菁绿近红外荧光成像用于肝外胆道造影的可行性探讨[J]. 实用医药杂志, 2019, 36(4): 321-322. DOI: 10.14172/j.issn1671-4008.2019.04.012 .

[53]

AMBE PC, PLAMBECK J, FERNANDEZ-JESBERG V, et al. The role of indocyanine green fluoroscopy for intraoperative bile duct visualization during laparoscopic cholecystectomy: An observational cohort study in 70 patients[J]. Patient Saf Surg, 2019, 13: 2. DOI: 10.1186/s13037-019-0182-8 .

[54]

DIP F, LOMENZO E, SAROTTO L, et al. Randomized trial of near-infrared incisionless fluorescent cholangiography[J]. Ann Surg, 2019, 270(6): 992-999. DOI: 10.1097/SLA.0000000000003178 .

[55]

LIU FB, JIANG D, GENG XP. Application of indocyanine green fluorescence imaging in biliary tract diseases[J]. Chin J Dig Surg, 2024, 23(1): 80-84. DOI: 10.3760/cma.j.cn115610-20231226-00276 .

[56]

刘付宝, 蒋东, 耿小平. 吲哚菁绿荧光成像技术在胆道疾病中的应用[J]. 中华消化外科杂志, 2024, 23(1): 80-84. DOI: 10.3760/cma.j.cn115610-20231226-00276 .

[57]

KUBOTA A, OKADA A, FUKUI Y, et al. Indocyanine green test is a reliable indicator of postoperative liver function in biliary atresia[J]. J Pediatr Gastroenterol Nutr, 1993, 16(1): 61-65. DOI: 10.1097/00005176-199301000-00012 .

[58]

QUIROZ HJ, VALENCIA SF, WILLOBEE BA, et al. Utility of routine intraoperative cholangiogram during cholecystectomy in children: A nationwide analysis of outcomes and readmissions[J]. J Pediatr Surg, 2021, 56(1): 61-65. DOI: 10.1016/j.jpedsurg.2020.09.047 .

[59]

PARABOSCHI I, DE COPPI P, STOYANOV D, et al. Fluorescence imaging in pediatric surgery: State-of-the-art and future perspectives[J]. J Pediatr Surg, 2021, 56(4): 655-662. DOI: 10.1016/j.jpedsurg.2020.08.004 .

[60]

LIM C, VIBERT E, AZOULAY D, et al. Indocyanine green fluorescence imaging in the surgical management of liver cancers: Current facts and future implications[J]. J Visc Surg, 2014, 151(2): 117-124. DOI: 10.1016/j.jviscsurg.2013.11.003 .

[61]

LUO DK, XUE DB, MA B. Research progress of fluorescent imaging in identifying the extrahepatic biliary system during laparoscopic cholecystectomy[J]. J Hepatopancreatobiliary Surg, 2020, 32(7): 437-442. DOI: 10.11952/j.issn.1007-1954.2020.07.013 .

[62]

罗丹堃, 薛东波, 马骉. 荧光导航在腹腔镜胆囊切除术中识别肝外胆道系统的研究进展[J]. 肝胆胰外科杂志, 2020, 32(7): 437-442. DOI: 10.11952/j.issn.1007-1954.2020.07.013 .

[63]

KONO Y, ISHIZAWA T, TANI K, et al. Techniques of fluorescence cholangiography during laparoscopic cholecystectomy for better delineation of the bile duct anatomy[J]. Medicine (Baltimore), 2015, 94(25): e1005. DOI: 10.1097/MD.0000000000001005 .

[64]

PESCE A, PICCOLO G, GRECA GL, et al. Utility of fluorescent cholangiography during laparoscopic cholecystectomy: A systematic review[J]. World J Gastroenterol, 2015, 21(25): 7877-7883. DOI: 10.3748/wjg.v21.i25.7877 .

基金资助

AI Summary AI Mindmap
PDF (643KB)

503

访问

0

被引

详细

导航
相关文章

AI思维导图

/