外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析
温小月 , 赵颖 , 王宝强 , 王贤 , 朱晓林 , 王义真 , 魏小红
草业学报 ›› 2025, Vol. 34 ›› Issue (06) : 154 -167.
外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析
Expression analysis of AP2/ERFs genes in alfalfa regulated by exogenous NO under drought stress
紫花苜蓿是世界上种植最广泛的饲用豆科作物。APETALA2/ethylene-responsive factor(AP2/ERF)转录因子在植物抵御非生物胁迫中起着关键作用。一氧化氮(nitric oxide,NO)作为植物体内的一种信号分子,在植物抗旱中扮演重要角色。本研究利用生物信息学方法对紫花苜蓿MsAP2/ERF基因家族成员进行鉴定及其对NO和干旱的响应模式分析,并从MsAP2/ERF基因家族中筛选到强烈响应NO调控的MsERF07基因进行亚细胞定位。结果表明,该家族成员均含有AP2结构域,其蛋白质的氨基酸数目介于176~422;亚细胞定位预测大部分蛋白都定位在细胞核; MsERF01和MsERF11的亲缘关系较近,并且它们具有相似的结构域;61.54%的MsAP2/ERF基因只含有外显子,也具有高度相似的保守基序;蛋白互作显示MsERF01和MsERF11、MsERF05和MsERF07均处于蛋白互作图中的同一节点;13个MsAP2/ERF基因家族成员被不均匀分布在13条染色体上,MsAP2/ERF基因家族成员的启动子序列中有43个与光反应、组织特异性表达、胁迫以及植物激素相关的顺式调控元件。此外,紫花苜蓿的转录组测序数据分析表明大部分MsAP2/ERF基因家族成员在NO的调控下表达量增加,进一步qRT-RCR试验结果显示,外源NO促进了干旱胁迫下MsAP2/ERF基因的表达量。克隆MsERF07基因,亚细胞定位结果显示该蛋白定位在细胞核与细胞膜中,本研究为后续研究紫花苜蓿MsERF07基因响应干旱胁迫的分子机制提供了基础。
Alfalfa (Medicago sativa) is the most widely grown forage legume crop in the world. APETALA2/ethylene-responsive (AP2/ERF) transcription factors play a key role in plant resistance to abiotic stress. Nitric oxide (NO), as a signaling molecule in plants, plays an important role in plant drought resistance. In this study, bioinformatics methods were used to identify members of the alfalfa MsAP2/ERF gene family and analyze their response patterns to NO and drought. The MsERF07 gene, which strongly responds to NO regulation, was screened from the MsAP2/ERF gene family for subcellular localization. The results showed that all members of the family contained AP2 domains, and the number of amino acids in their proteins ranged from 176 to 422. Subcellular localization predicted that most proteins were localized in the nucleus. MsERF01 and MsERF11 were closely related and had similar domains. 61.54% of MsAP2/ERF genes contained only exons and also had highly similar conserved motifs. Protein interaction showed that MsERF01 and MsERF11, MsERF05 and MsERF07 were all located at the same node in the protein interaction map. The 13 MsAP2/ERF gene family members were unevenly distributed on 13 chromosomes, and there were 43 cis-regulatory elements related to light response, tissue-specific expression, stress and plant hormones in the promoter sequences of the MsAP2/ERF gene family members. In addition, transcriptome sequencing data analysis of alfalfa showed that the expression of most MsAP2/ERF gene family members increased under the regulation of NO, and further qRT-RCR experimental results showed that exogenous NO promoted the expression of MsAP2/ERF genes under drought stress. The MsERF07 gene was cloned, and subcellular localization results showed that the protein was localized in the nucleus and cell membrane. This study provides a basis for subsequent research on the molecular mechanism of the alfalfa MsERF07 gene action in response to drought stress.
drought stress / nitric oxide / alfalfa / AP2/ERF
| [1] |
Gou J, Debnath S, Sun L, et al. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnology Journal, 2018, 16(4): 951-962. |
| [2] |
Xiao Y, Zhang J, Jia T T, et al. Effects of alternate furrow irrigation on the biomass and quality of alfalfa (Medicago sativa). Agricultural Water Management, 2015, 161: 147-154. |
| [3] |
Siddiqui M H, Al-Whaibi M H, Basalah M O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 2011, 248: 447-455. |
| [4] |
Lian H, Qin C, Shen J, et al. Alleviation of adverse effects of drought stress on growth and nitrogen metabolism in mungbean (Vigna radiata) by sulphur and nitric oxide involves up-regulation of antioxidant and osmolyte metabolism and gene expression. Plants, 2023, 12(17): 3082. |
| [5] |
Palmieri M C, Sell S, Huang X, et al. Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. Journal of Experimental Botany, 2008, 59(2): 177-186. |
| [6] |
de Sousa L F, de Menezes-Silva P E, Lourenço L L, et al. Improving water use efficiency by changing hydraulic and stomatal characteristics in soybean exposed to drought: the involvement of nitric oxide. Physiologia Plantarum, 2020, 168(3): 576-589. |
| [7] |
Abedi T, Pakniyat H. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 2010, 46(1): 27-34. |
| [8] |
Majeed S, Nawaz F, Naeem M, et al. Nitric oxide regulates water status and associated enzymatic pathways to inhibit nutrients imbalance in maize (Zea mays L.) under drought stress. Plant Physiology and Biochemistry, 2020, 155: 147-160. |
| [9] |
Cai Z S. Effects of exogenous NO on seed germination and drought resistance of alfalfa under water stress. Lanzhou: Gansu Agricultural University, 2013. |
| [10] |
蔡卓山. 水分胁迫下外源NO对苜蓿种子萌发和幼苗抗旱生理的影响. 兰州: 甘肃农业大学, 2013. |
| [11] |
Zhao Y, Wei X, Long Y, et al. Transcriptional analysis reveals sodium nitroprusside affects alfalfa in response to PEG-induced osmotic stress at germination stage. Protoplasma, 2020, 257: 1345-1358. |
| [12] |
Brouquisse R. Multifaceted roles of nitric oxide in plants. Journal of Experimental Botany, 2019, 70(17): 4319-4322. |
| [13] |
Shi K, Liu J, Liang H, et al. An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation. Journal of Integrative Plant Biology, 2024, 66(4): 683-699. |
| [14] |
Feng K, Hou X L, Xing G M, et al. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology, 2020, 40(6): 750-776. |
| [15] |
Liu K, Yang Q, Yang T, et al. Transcriptome-based identification and expression profiling of AP2/ERF members in Caragana intermedia and functional analysis of CiDREB3. Molecular Biology Reports, 2021, 48(12): 7953-7965. |
| [16] |
Jian W N, Zuo P, Zhang G Z, et al. Cloning and functional analysis of MsERF003 gene in drought stress from Medicago sativa. Molecular Plant Breeding, 2020, 18(17): 5674-5681. |
| [17] |
坚伟宁, 左朋, 张国珍, 紫花苜蓿MsERF003的基因克隆及其在干旱胁迫中的功能分析. 分子植物育种, 2020, 18(17): 5674-5681. |
| [18] |
Jung S E, Bang S W, Kim S H, et al. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. International Journal of Molecular Sciences, 2021, 22(14): 7656. |
| [19] |
Chen K, Tang W, Zhou Y, et al. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiology and Biochemistry, 2022, 170: 287-295. |
| [20] |
Wang Z, Zhao X, Ren Z, et al. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant, Cell & Environment, 2022, 45(2): 312-328. |
| [21] |
Zhu X, Wang B, Liu W, et al. Genome-wide analysis of AP2/ERF gene and functional analysis of CqERF24 gene in drought stress in quinoa. International Journal of Biological Macromolecules, 2023, 253: 127582. |
| [22] |
Li Y, Zhang H, Zhang Q, et al. An AP2/ERF gene, IbRAP2-12, from sweet potato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Science, 2019, 281: 19-30. |
| [23] |
Wang Y Q, Xia D N, Wen Q L, et al. Overexpression of a tomato AP2/ERF transcription factor SlERF. B1 increases sensitivity to salt and drought stresses. Scientia Horticulturae, 2022, 304: 111332. |
| [24] |
Jin X, Yin X, Ndayambaza B, et al. Genome-wide identification and expression profiling of the ERF gene family in Medicago sativa L. under various abiotic stresses. DNA and Cell Biology, 2019, 38(10): 1056-1068. |
| [25] |
Zhang H, Gao S, Lercher M J, et al. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Research, 2012, 40(1): 569-572. |
| [26] |
Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(S2): 202-208. |
| [27] |
Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 2018, 46(1): 296-303. |
| [28] |
Gao T, Gao Y, Liu X, et al. Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. BMC Microbiology, 2021, 21(1): 58. |
| [29] |
Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research, 2012, 41: 808-815. |
| [30] |
Li X J, Yang J L, Hao B, et al. Comparative transcriptome and metabolome analyses provide new insights into the molecular mechanisms underlying taproot thickening in Panax notoginseng. BMC Plant Biology, 2019, 19(1): 451. |
| [31] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
| [32] |
Froger A, Hall J E. Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments, 2007(6): e253. |
| [33] |
Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science, 2003, 5618(300): 445-452. |
| [34] |
Ke X W, Zhang J P, Liu G H, et al. Identification of adzuki bean AP2/ERF gene family and expression analysis in response to rust infection. Acta Phytopathologica Sinica, 2020(4): 394-404. |
| [35] |
柯希望, 张金鹏, 刘国辉, 小豆AP2/ERF基因家族鉴定及其应答锈菌侵染的表达分析. 植物病理学报, 2020(4): 394-404. |
| [36] |
Zhang Z, Li X. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Scientific Reports, 2018, 8(1): 15612. |
| [37] |
Zhao Y Z. Genome-wide analysis of the AP2/ERF gene family in maize. Chengdu: Sichuan Agricultural University, 2022. |
| [38] |
赵御璋. 玉米AP2/ERF基因家族的分析与鉴定. 成都: 四川农业大学, 2022. |
| [39] |
Keller P A, Yvonne J K E. A primer of genome science. Briefings in Functional Genomics and Proteomics, 2002: 318-319, 10.1093/bfgp/1.3.318. |
| [40] |
Liu M, Sun W, Ma Z, et al. Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum tataricum). BMC Plant Biology, 2019, 19(1): 84. |
| [41] |
Ghorbani R, Zakipour Z, Alemzadeh A, et al. Genome-wide analysis of AP2/ERF transcription factors family in Brassica napus. Physiology and Molecular Biology of Plants, 2020, 26(7): 1463-1476. |
| [42] |
Guo B J, Wei Y F, Xu R B, et al. Genome-wide analysis of APETALA2/ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS One, 2016, 11(9): e0161322. |
| [43] |
Ma J, Zhang G Z, Ye Y C, et al. Genome-wide identification and expression analysis of HSF transcription factors in alfalfa (Medicago sativa) under abiotic stress. Plants, 2022, 20(11): 2763. |
| [44] |
Zhao Y, Xin X Q, Wei X H. Effects of nitric oxide on nitrogen metabolism of alfalfa under drought stress. Acta Prataculturae Sinica, 2021, 30(9): 86-96. |
| [45] |
赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响. 草业学报, 2021, 30(9): 86-96. |
| [46] |
Barnard E, McFerran N V, Trudgett A, et al. Detection and localisation of protein-protein interactions in Saccharomyces cerevisiae using a split-GFP method. Fungal Genetics and Biology, 2008, 45(5): 597-604. |
甘肃农业大学科技创新基金-科研启动基金(GSAU-KYQD-2020-7)
国家自然科学基金(32060401)
/
| 〈 |
|
〉 |