玻纤增强聚丙烯热管理系统基板模流分析优化
Optimization of Glass Fiber Reinforced Polypropylene Base Plate of Thermal Management System Based on Molding Flow Analysis
文章基于仿真技术模拟了某玻纤增强热管理系统基板的注塑成型过程,以此评估可行性及优化方案。通过分析填充阻力及浇口匹配性结果确定了最佳的进胶方案。采用初始工艺计算得到基板的定位孔变形极差为0.538 4 mm,达不到设计指标要求。以注射时间、保压时间、模腔温度及熔料温度为变量设计正交试验并进行分析。结果表明:保压时间和注射时间的影响为极显著;模腔温度的影响为显著,而熔料温度的影响不显著。优化的工艺参数组合为A2B2C1D3。优化工艺的仿真结果显示:定位孔变形极差为0.452 8 mm,下降了15.9%,且达到设计指标要求;填状态良好、无缺欠注和滞留。实际试模样品的外观良好、变形结果均合格,验证了优化工艺的正确性。
Thermal management system substrate / Simulating calculation / Orthogonal test / Parameters optimization
| [1] |
胡祖贤,王可,干宏程,电动汽车电池热管理系统发展现状及分析[J].农业装备与车辆工程,2023,61(1):69-74. |
| [2] |
曾祥兵,谢堃,张伟,新型动力电池热管理系统设计及性能研究[J].汽车工程,2022,44(4):476-481. |
| [3] |
郭绍杰.新能源汽车动力电池散热方式及散热问题的热管理解决方案[J].节能,2022,41(5):86-88. |
| [4] |
武晓萌,刘丰满,马鹤,基于柔性基板的异构多芯片三维封装散热仿真与优化设计[J].科学技术与工程,2014,14(19):238-242. |
| [5] |
顾骁,宋健,顾炯炯,基板封装注塑中芯片断裂的有限元分析[J].电子与封装,2021,21(9):29-35. |
| [6] |
张遇好,袁海,王明琼,LTCC基板内嵌金属柱多层微流道技术[J].电子工艺技术,2023,44(3):35-37, 59. |
| [7] |
李骥,史忠山.电子冷却热沉基板的三维数值优化[J].电力电子技术,2011,45(12):109-111. |
| [8] |
康峰.平直基板上液滴蒸发过程的数值模拟[D].北京:华北电力大学,2022. |
| [9] |
祝大同.高导热性树脂开发与应用的新进展(1)——对散热基板材料制造新技术的综述[J].印制电路信息,2012(10):11-16. |
| [10] |
韩常雨,刘姣,张小舟,用于柔性基板聚酰亚胺热性能的研究进展[J].塑料,2022,51(1):111-116. |
| [11] |
董卫国.玻璃纤维/聚丙烯纤维增强热塑复合材料的制备及其性能[J].纺织学报,2019,40(3):71-75. |
| [12] |
宋清华,肖军,文立伟,玻璃纤维增强热塑性塑料在航空航天领域中的应用[J].玻璃纤维,2012(6):40-43. |
| [13] |
董影,戴廷婷,黄海鸥,玻纤增强聚丙烯制品翘曲行为的研究及优化[J].军民两用技术与产品,2018(16):119. |
| [14] |
杨波,孙玲.工艺参数对短玻璃纤维增强PP注塑制品翘曲变形的影响研究[J].中国塑料,2015,29(1):90-94. |
| [15] |
曹永志,王启祥,王传龙.基于Pro/E软件的手机壳注塑过程模流分析[J].塑料科技,2021,49(1):103-106. |
| [16] |
荆彦涛,王羽,曹冠忠,基于CAE分析的热水器显示面板翘曲变形优化设计[J].轻工标准与质量,2021(4):112-114. |
| [17] |
谭安平,幸晋渝,刘克威.打印机底壳翘曲变形分析及工艺参数正交优化[J].模具技术,2021(5):45-49. |
| [18] |
陈文,徐小兵,李增超,基于CAE和正交试验的工艺参数对翘曲变形的研究[J].塑料科技,2019,47(6):99-102. |
| [19] |
张晓陆.多侧浇口塑件法流动分析及应用[J].金属加工:冷加工,2010(20):48-51. |
| [20] |
娄小安,苏吉英,孟成铭,改性聚丙烯收缩率的研究[J].中国塑料,2011,25(12):59-62. |
| [21] |
吴利明.借助CAE分析软件来设计最佳浇口位置[J].中国科技信息,2005(21):71. |
| [22] |
钱超.塑料插座面板的模流分析及参数优化[J].机电信息,2022(19):84-88. |
/
| 〈 |
|
〉 |