聚氯乙烯及其混合塑料热解脱氯技术研究进展

杨子豪 ,  陈宪科 ,  甘志端 ,  王永征 ,  牛胜利 ,  韩奎华

塑料科技 ›› 2024, Vol. 52 ›› Issue (12) : 146 -153.

PDF (771KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (12) : 146 -153. DOI: 10.15925/j.cnki.issn1005-3360.2024.12.028
综述

聚氯乙烯及其混合塑料热解脱氯技术研究进展

作者信息 +

Research Progress on Pyrolysis Dechlorination Technology of PVC and Its Mixed Plastics

Author information +
文章历史 +
PDF (789K)

摘要

聚氯乙烯(PVC)作为使用范围最广的含卤塑料,在回收过程中存在氯代烃、二噁英等有毒气体的释放以及腐蚀设备管道等问题。热解脱氯技术不仅能够将含PVC废塑料进行脱氯无害化处理,还能够将废弃物转化成高附加值的化学品和燃料,并提升产物的产率和品质,是废塑料处理工业化前景技术之一。文章聚焦于国内外热解脱氯技术的研究进展,全面梳理不同脱氯技术(分步热解、吸附热解、催化热解、共热解和联合热解)的脱氯机理,总结各种影响热解脱氯效果的因素(添加剂的种类及作用方式、放置模式、掺混物种类等),剖析各技术的优劣和工业应用前景,为废塑料脱氯和回收利用工业化提供参考。

关键词

聚氯乙烯 / 废塑料 / 脱氯 / 热解 / 清洁化回收

Key words

Polyvinyl chloride / Waste plastic / Dechlorination / Pyrolysis / Clean recycling

引用本文

引用格式 ▾
杨子豪,陈宪科,甘志端,王永征,牛胜利,韩奎华. 聚氯乙烯及其混合塑料热解脱氯技术研究进展[J]. 塑料科技, 2024, 52(12): 146-153 DOI:10.15925/j.cnki.issn1005-3360.2024.12.028

登录浏览全文

4963

注册一个新账户 忘记密码

化石能源的枯竭和生态环境的恶化使废塑料等石油基衍生物的清洁资源化回收成为可持续发展战略的必由之路。我国是世界最大的塑料生产国和消费国之一,根据国家统计局数据,2022年我国塑料制品总生产量为77 716 000 t[1],但每年塑料制品资源回收率却不足30%[2]。传统废塑料的处理方式主要包括焚烧、填埋、物理回收和改性再生[3],但传统废塑料的处理可能导致严峻的环境和经济问题,其中包括有毒物质的释放、土质污染、复杂的分选流程和极高的设备成本[4]。热解作为新兴清洁技术,可在惰性气氛中将塑料裂解成高附加值的气、液、固三相产物[5],其中液态油拥有与柴油相似的有机组成和燃烧特性[6],这使热解在真正意义上实现了废塑料的资源化回收。生活中常见的废塑料包括高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、聚苯乙烯(PS)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)。其中PVC由于极高的含氯量在回收过程中会释放氯代烃等有毒气体并且腐蚀设备[7],所以废塑料在回收前的脱氯步骤变得尤为重要。目前国内外脱氯技术主要包括机械脱氯[8]、水热脱氯[9]、热分解脱氯[10]和一些新兴的脱氯技术[11-13]。其中,热解脱氯技术,既解决了废塑料回收过程中资源浪费的问题,又通过脱氯达到清洁无害化,是废塑料等市政垃圾回收利用热点技术之一。
本文从含PVC废塑料清洁资源化回收角度出发,对国内外热解脱氯技术进行系统综述,着重总结分步热解、吸附热解、催化热解、共热解和联合热解的脱氯机理、不同影响因素(添加剂的种类及作用方式、放置模式、掺混物种类等)对热解产物分布和脱氯效果的影响,并对各种技术进行优缺点和工业前景分析,为废塑料清洁利用提供支撑。

1 分步热解

分步热解是指利用PVC特殊的热解特性,将含PVC废塑料先在低温段(220~380 ℃)进行热解处理将氯脱除,再于高温区(400~700 ℃)段进行热解制油、气和碳的脱氯技术。图1为PVC分步热解脱氯机理。从图1可以看出,PVC的脱氯机理目前存在3种假说,分别为自由基反应机理、离子反应机理和类离子反应机理[14]。自由基反应机理认为,在PVC分子结构中,C—Cl键不稳定,其键能为326 kJ/ mol,低于C—C键(435 kJ/mol)与C—H键(347 kJ/mol)的键能[15],极易在低温区段先行发生断裂,主要发生在烯丙基氯或叔氯处[16],产生的Cl·会攻击相邻碳原子上的氢原子形成HCl,并在碳链上形成共轭多烯结构[17]。离子反应认为,氯具有极强的电负性,易在高温作用下生成Cl-,吸附H+形成HCl并生成多烯结构[18]。类离子反应则认为,C—Cl键不完全电离却拥有明显电荷分离,与相邻碳氢原子形成四核过渡态,而后在温度作用下生成HCl和C=C[19]

针对含PVC废塑料的热解特性,LI等[20]分别对纯PVC和两种商业PVC混合塑料进行热重实验,结果显示,3种材料均存在低温失重段和高温失重段,220~380 ℃之间出现的失重峰是PVC脱HCl所导致,此时会伴随少量的芳烃生成,400~700 ℃之间的失重峰是由于碳链骨架断裂,PVC分子链间环化、交联等作用产生大量芳烃。张康莹等[21]在200~350 ℃对PVC进行了低温热解实验,发现在350 ℃热解30 min条件下PVC脱氯效率可达98.74%。DONG等[15]在240~340 ℃之间对PVC进行低温热解,并将所得热解碳于500~700 ℃进行二次热解。结果表明:340 ℃所得热解碳脱氯效率可达99.93%,热解碳中存在明显的C=C结构且后续热解油中不存在含氯成分。以上研究均表明,低温热解能高效脱除PVC中的氯元素,为分步热解优化气、液、固三相产物品质提供依据。

分步热解脱氯效率的影响因素主要为分步热解各阶段的温度和停留时间。表1为不同条件下分步热解的脱氯效率。从表1可以看出,分步热解可以高效地脱除废塑料中的氯,热解一阶段的最佳温度在300~380 ℃之间,这与一阶段的停留时间相匹配,较低的脱氯温度需要更长的脱氯时间以达到更好的脱氯效果。由于热解第一阶段会产生少量的芳烃,第一阶段过高的温度和过长的停留时间也会使最终热解油产率降低。第二阶段的温度和停留时间则直接影响最终目标产物的产率,最佳温度范围为430~520 ℃之间,过高的温度不利于焦油的产生,对脱氯率影响较小。

分步热解工艺流程简单,无须对原材料进行筛选分离,所需工业成本较低,拥有较高的脱氯效率(≥99%),且低温区段释放的氯可通过HCl的形式回收再利用,已广泛用于废物处理和资源化回收产业,具有极大的发展前景。但是分步热解在低温段会导致部分碳链断裂影响目标产物产率,且低温热解阶段气体中包含少量小分子烃类[27],如何减少后续产物损失和HCl的高纯度回收成为亟待解决的问题。

2 吸附热解

吸附热解是指在热解体系中加入吸附剂,通过吸附热解所产生的HCl将氯固定到固体产物之中,从而减少液态产物氯含量的技术。根据吸附剂放置位置吸附热解可分为原位吸附和异位吸附。原位吸附是将吸附剂直接与原料混合,异位吸附是指将吸附剂放置于热解区域的后续位置,挥发分经过吸附剂后冷凝,从而达到吸附效果[28]。原位吸附由于其特殊的混合方式,拥有更强的反应速率和较高的脱氯效率,但吸附剂和原材料混合,导致吸附剂难以分离和重复再利用,降低热解碳的利用价值,运行成本较高[29]。异位吸附脱氯效率相对较低,且由于吸附剂的放置位置需要增加设备的吸附装置和管道,增加成本,但是吸附剂可单独回收、重整和再利用,所得的热解碳也具有较高的纯度[30]

吸附剂是吸附热解的核心,表2为常见的脱氯吸附剂以及其作用机理。从表2可以看出,常用的吸附剂主要分为三类:(1)金属氧化物:CaO、Al2O3、Fe3O4、Fe2O3和ZnO。(2)金属氢氧化物:NaOH、KOH和Ca(OH)2。(3)金属盐:Na2CO3、AgNO3和CaCO3。影响吸附剂脱氯效率的因素包括孔隙率、比表面积、吸附剂径粒大小,吸附停留时间和温度等[31],通常情况下较小的粒径,较大的孔隙率和比表面积会有更好的吸附效果[32]

热解吸附技术工艺流程简单,成本较低,但是吸附剂在高温状态下存在失活和解吸附等问题,且原位吸附涉及吸附剂难以回收再利用的问题,吸附剂的添加也降低了热解碳品质和增加排渣难度。

3 催化热解

催化热解脱氯是指在催化剂的作用下,废弃PVC加强脱氯和分解的热化学处理方式。催化剂在热解体系中发挥3个作用:(1)催化PVC的热分解。(2)催化PVC的脱氯过程。(3)作为吸附剂吸收热解所产生的HCl。根据催化剂的放置模式,催化热解也可以分为原位催化和异位催化。在原位催化过程中,由于熔融物与催化剂直接接触,可有效降低热解的温度和停留时间,增强催化剂孔内的重整反应[41],但是废塑料的熔融状态极易使催化剂的多孔结构失活[28],催化剂的分离、回收和再循环也会更加艰难[42]。异位催化是指热解蒸汽经过位于装置下游的催化剂,经过催化重整后再冷凝的过程。废塑料的独立热解和亚稳态重整避免了与催化剂的直接接触,降低了催化剂的失活率[43],且热解催化温度的双精度控制,有效确保了催化效率,减少了重质油的成分,具有广阔的工业应用前景[44]

PVC的催化热解遵循碳正离子机理,碳正离子是通过催化剂上的酸位点从聚合物中提取氢化物离子形成[45]。最初形成的离子通过β-断裂、异构化、氢转移烷基化和低聚化进行链式反应[46]。这导致大分子裂解成气态和液态产物,并形成焦炭,最终通过自由基或离子的分解或重组进行链终止。

催化剂是催化脱氯的关键,表3为不同催化剂作用下含PVC废塑料热解脱氯产物分布和脱氯效果。常用的PVC脱氯催化剂有两种,分别为酸性沸石类和碱金属氧化物类。沸石是一种天然硅铝酸盐分子筛,因为其多孔的结构和对各种聚合物普遍拥有高裂化活性而常用于废塑料的热解[47],通常包括ZSM-5和HZSM-5等。LÓPEZ等[48]在半歇式反应器中研究了ZSM-5对含PVC混合塑料的脱氯效果和热解特性影响。结果表明:废旧的ZSM-5能够将热解油中氯的质量分数降低至0.3%,液态油中甲苯和苯乙烯等芳香族化合物大大提高,在低温下可获得95%的高转化率。张乐瑶[49]探究不同硅铝比的条件下HZSM-5对PVC催化热解的影响,发现在650 ℃、Si/Al为200条件下催化效果最好,液态油中未检测出含氯有机物且芳香烃产率为14.67%。以上结果表明,酸性沸石类催化剂不仅能够催化脱氯,还具有更高的产物选择性。

碱金属氧化物类为最常用的催化剂,例如Al2O3、ZnO、CaO、Fe2O3、PbO、La2O3等,在催化过程中起到催化和吸附的双重作用。YANIK等[50]研究了赤泥(主要成分为Fe2O3、SiO2和Al2O3)对PVC混合塑料催化热解脱氯的影响。结果表明:赤泥同时兼顾吸附和催化的作用,能够有效提高液态油产率。MASUDA等[51]研究6种不同的碱金属氧化物对PVC热解特性和氯分布的影响。结果发现,La2O3具有最高的固氯能力,在800 ℃时固氯超过95%,有效抑制了氯苯的形成。

近年来一些学者研制新型复合催化剂用于PVC催化,也起到良好的催化效果。VEKSHA等[40]通过将5%的NiO负载于CaCO3上制备出Ni-Ca催化剂,并探究不同温度下Ni-Ca催化剂对含PVC废塑料脱氯效率和热解特性的影响。结果表明:在500~700 ℃下脱HCl效率都达到99%以上,且该催化剂表现出高选择性,约99%的不饱和烃在该过程中分解为氢气和多壁碳纳米管,而烷烃的转化率可以保持在约10%以下。TANG等[52]以1∶1的物质的量比将Al2O3与ZnO制作成AZCC铝锌复合催化剂,并用于探究两种催化剂放置模式下对含PVC废塑料的热解影响。结果表明:AZCC在原位和异位放置均有良好的脱氯效果,异位热解油中含氯量仅为2.69%,并且两种放置方式均降低了液态产物热解温度和平均碳数。

催化热解拥有较高的热解效率、脱氯效率和目标产物选择性,是热解脱氯的关键技术。但原位催化面临催化剂极易中毒、失活和难回收再生问题,异位催化面临工艺流程复杂、设备运行成本高等问题,这些问题使催化热解很难进行大规模工业应用。

4 共热解

共热解是指含PVC塑料与其他高分子有机物充分混合热解,通过协同作用降低HCl的排放,将氯固定到固态产物中,从而减少氯代烃的产生,降低液态油中的含氯成分的技术。常见的共热解掺混物为生物质或者煤,表4为不同掺混物和反应条件下脱氯效果。PVC与生物质热解过程中存在协同作用,PVC热解析出的HCl能够作为催化剂促进生物质的快速降解,降低反应活化能,共热解抑制HCl的析出并将氯固定到焦炭中,从而降低热解油中的氯含量。YU等[56]通过微波技术研究PVC和槐木的共热解特性和氯迁移行为发现共热解使氯的释放量从59.07%降低至28.09%,促进氯在半焦中的保留(氯的质量分数从0.33%提高至4.72%),低温下(<550 ℃)将热解油中含氯化合物的质量分数抑制1%以下,并提高液态产物的产率和品质。DUANGCHAN等[57]研究PVC和牛粪的共热解特性,用Box-Behnken模型优化热解条件,发现原料掺混比为1∶5时,HCl还原效率最高,可靠性大于90%,牛粪的存在使油产量降低约17%,苯、甲苯和二甲苯(BTX)浓度迅速下降,氯代烃减少45%。PVC与煤共热解存在协同作用,主要体现在降低反应活化能、增加碳产率和固氯,煤中含有的金属氧化物如CaO、Fe2O3等能够反向催化PVC的热解和脱氯。WANG等[58]研究PVC和平朔煤的共热解和氯分布特性,发现PVC对焦油产率有正向协同效应,当PVC质量分数为30%时,焦油产率最大增加2.30%,PVC质量分数为15%时,液态油中氯含量实验值下降为计算值的46.23%。

含PVC废塑料与其他高分子材料共热解主要遵循自由基反应机理,共热解促进了·H自由基的释放,加速了碳链的分解和含氧自由基的产生,促进脱碳基反应和脱羟基反应并提高了反应速率和剧烈程度[61]。生物质和煤灰分中的碱金属氧化物与HCl反应,将氯固定在焦炭中从而降低热解油氯含量。综上所述,PVC共热解技术不仅能够降低共热解反应活化能,降低反应温度和增加反应速率,还能够抑制HCl的产出,降低液态油中的氯含量和氧含量,改善液态油品质,是生物质、废塑料和煤等高分子有机物资源化利用和产物优化的良好选择。此外,共热解技术还解决了固废回收面临的原料分选问题,简化了生物质/塑料复合材料和无法进行分离的市政垃圾的回收流程。

5 联合热解

为了达到液态油中的含氯量低于10 mg/L这一标准[27],废塑料热解往往需要结合多种脱氯方法来达到更好的脱氯效果。表5列举了现阶段一些联合热解的例子及其对应的脱氯效果。脱氯过程中往往会结合分步脱氯这一技术,因为分步脱氯用最简单的工艺流程便可去掉大部分的氯(>99%)。在众多联合热解搭配中,分步热解结合催化热解达到的脱氯效果最佳。HU等[47]将分步热解和催化热解技术相结合来改善PVC混合塑料热解油中氯含量。结果表明:350 ℃是分步热解第一阶段的最佳温度,ZSM-5能够有效降低热解油中有机氯的含量,与无催化剂条件相比(1.12 mg/g),ZSM-5(25)可将热解油中氯含量降低至0.02 mg/g。PARK等[63]分别通过单独的两步热解和连续的两步热解研究含PVC废塑料的热解特性,并用CaO作为催化剂异位对产物进行催化提质。结果表明:单独的两步热解油中有机氯含量仅为14 mg/L,但独立的实验装置使气体产率和油中芳烃含量增加。连续的两步热解拥有更好的脱氯效果,液态油中有机氯含量仅为6.3 mg/L。

6 结论

国内外常见的热解脱氯方法包括分步热解、吸附热解、催化热解、共热解和联合热解。分步热解利用PVC分段式热解特性可在低温段进行脱氯,因为其简单的工艺流程和极高的脱氯效率在工业中广泛应用。吸附热解和催化热解通过在热解体系中加入脱氯剂达到脱氯效果,脱氯剂的种类和放置模式是影响脱氯效果的关键。共热解通过废塑料与其他高分子有机物之间的协同作用抑制HCl的释放,增加碳产率和降低液态油中的氯含量,改善液态油品质的同时起到催化热解的作用。联合热解将上述几种热解方法的有机结合,进一步提高脱氯效果。虽然热解脱氯技术在实验室规模已有成体系的研究,但在工业化方面仍停留在简单的分步热解和吸附热解阶段。研发出更具经济性、高效性的催化剂/吸附剂和解决添加剂中毒、失活和再生困难等问题是热解脱氯走向规模化、工业化的重点方向。

参考文献

[1]

马占峰,牛国强,芦珊.中国塑料加工业(2022)[J].中国塑料,2023,37(5):110-115.

[2]

王红秋,付凯妹.新形势下我国废塑料回收利用产业现状与思考[J].塑料工业,2022,5006:38-42.

[3]

ZHOU N, DAI L L, LYU Y C, et al. A structured catalyst of ZSM-5/SiC foam for chemical recycling of waste plastics via catalytic pyrolysis[J]. Chemical Engineering Journal, 2022, DOI: 10.1016/j.cej.2022.135836.

[4]

NDIAYE N K, DERKYI N S A, AMANKWAH E. Pyrolysis of plastic waste into diesel engine-grade oil[J]. Scientific African, 2023, DOI: 10.1016/j.sciaf.2023.e01836.

[5]

WANG B, CHEN Y S, CHEN W, et al. Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field[J]. Energy, 2024, DOI: 10.1016/j.energy.2024.130711.

[6]

SUBHASHINI, MONDAL T. Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil[J]. Journal of Environmental Management, 2023, DOI: 10.1016/j.jenvman.2023.118680.

[7]

PARK K B, OH S J, BEGUM G, et al. Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride[J]. Energy, 2018, 157: 402-411.

[8]

LU J, BORJIGIN S, KUMAGAI S, et al. Machine learning-based discrete element reaction model for predicting the dechlorination of poly(vinyl chloride) in NaOH/ethylene glycol solvent with ball milling[J]. Chemical Engineering Journal Advances, 2020, DOI: 10.1016/j.ceja.2020.100025.

[9]

LI Z Y, NIU S L, LIU J W, et al. Solid fuel production from co-hydrothermal carbonization of polyvinyl chloride and corncob: Higher dechlorination efficiency and process water recycling[J]. Science of The Total Environment, 2022, DOI: 10.1016/j.scitotenv.2022.157082.

[10]

AL-YAARI M, DUBDUB I. Pyrolytic behavior of polyvinyl chloride: Kinetics, mechanisms, thermodynamics, and artificial neural network application[J]. Polymers, 2021, DOI: 10.3390/polym13244359.

[11]

XIU F R, TAN X, QI Y, et al. Treatment of DEHP-rich PVC waste in subcritical urine wastewater: Efficient dechlorination, denitrification, plasticizer decomposition, and preparation of high-purity phthalic acid crystals[J]. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2022.129820.

[12]

LEON-FERNANDEZ L F, RODRIGO M A, VILLASEÑOR J, et al. Electrocatalytic dechlorination of 2,4-dichlorophenol in bioelectrochemical systems[J]. Journal of Electroanalytical Chemistry, 2020, DOI: 10.1016/j.jelechem.2020.114731.

[13]

XIU F R, BAI Q, QI Y, et al. An alkali-enhanced subcritical water treatment strategy of short-chain chlorinated paraffins: Dechlorination and hydrocarbons recovery[J]. Science of The Total Environment, 2023, DOI: 10.1016/j.scitotenv.2023.166574.

[14]

STARNES W H. Overview and assessment of recent research on the structural defects in poly(vinyl chloride)[J]. Polymer Degradation and Stability, 2012, 97(9): 1815-1821.

[15]

DONG N, HUI H L, LI S G, et al. Study on preparation of aromatic-rich oil by thermal dechlorination and fast pyrolysis of PVC[J]. Journal of Analytical and Applied Pyrolysis, 2023, DOI: 10.1016/j.jaap.2022.105817.

[16]

孙艺蕾,马跃,李术元,聚烯烃塑料的热解和催化热解研究进展[J].化工进展,2021,40(5):2784-2801.

[17]

TORRES D, JIANG Y, SANCHEZ-MONSALVE D A, et al. Hydrochloric acid removal from the thermogravimetric pyrolysis of PVC[J]. Journal of Analytical and Applied Pyrolysis, 2020, DOI: 10.1016/j.jaap.2020.104831.

[18]

STARNES W H. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride)[J]. Progress in Polymer Science, 2002, 27(10): 2133-2170.

[19]

全淑苗,张彦军,宋小飞,废塑料脱氯技术现状及产业化进展[J].中国塑料,2022,36(9):122-130.

[20]

LI W, BAI Z Q, ZHANG T T, et al. Comparative study on pyrolysis behaviors and chlorine release of pure PVC polymer and commercial PVC plastics[J]. Fuel, 2023, DOI: 10.1016/j.fuel.2023.127555.

[21]

张康莹,武云飞,王德超,预脱氯处理PVC残渣和平朔煤共热解的协同效应研究[J].燃料化学学报,2021,49(8):1086-1094.

[22]

HUBÁČEK J, LEDERER J, KURÁŇ P, et al. Dechlorination during pyrolysis of plastics: The potential of stepwise pyrolysis in combination with metal sorbents[J]. Fuel Processing Technology, 2022, DOI: 10.1016/j.fuproc.2022.107226.

[23]

LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Dechlorination of fuels in pyrolysis of PVC containing plastic wastes[J]. Fuel Processing Technology, 2011, 92(2): 253-260.

[24]

BHASKAR T, NEGORO R, MUTO A, et al. Prevention of chlorinated hydrocarbons formation during pyrolysis of PVC or PVDC mixed plastics[J]. Green Chemistry, 2006, DOI: 10.1039/b603037h.

[25]

BOCKHORN H, HORNUNG A, HORNUNG U. Stepwise pyrolysis for raw material recovery from plastic waste[J]. Journal of Analytical and Applied Pyrolysis, 1998, 46(1): 1-13.

[26]

MIRANDA R, PAKDEL H, ROY C, et al. Vacuum pyrolysis of commingled plastics containing PVC Ⅱ. Product analysis[J]. Polymer Degradation and Stability, 2001, 73(1): 47-67.

[27]

SOPHONRAT N, SANDSTRÖM L, ZAINI I N, et al. Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates[J]. Applied Energy, 2018, 229: 314-325.

[28]

ABBAS-ABADI M S, UREEL Y, ESCHENBACHER A, et al. Challenges and opportunities of light olefin production via thermal and catalytic pyrolysis of end-of-life polyolefins: Towards full recyclability[J]. Progress in Energy and Combustion Science, 2023, DOI: 10.1016/j.pecs.2022.101046.

[29]

WILLIAMS P T, SLANEY E. Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures[J]. Resources, Conservation and Recycling, 2007, 51(4): 754-769.

[30]

AL-SALEM S M, BEHBEHANI M H, AL-HAZZA'A A, et al. Study of the degradation profile for virgin linear low-density polyethylene (LLDPE) and polyolefin (PO) plastic waste blends[J]. Journal of Material Cycles and Waste Management, 2019, 21(5): 1106-1122.

[31]

BHASKAR T, MATSUI T, NITTA K, et al. Laboratory evaluation of calcium-, iron-, and potassium-based carbon composite sorbents for capture of hydrogen chloride gas[J]. Energy & Fuels, 2002, DOI:10.1021/EF020094T.

[32]

YAO N, WANG X P, YANG Z H, et al. Characterization of solid and liquid carbonization products of polyvinyl chloride (PVC) and investigation of the PVC-derived adsorbent for the removal of organic compounds from water[J]. Journal of Hazardous Materials, 2023, DOI: 10.1016/j.jhazmat.2023.131687.

[33]

ZHANG X, TANG J Y, CHEN J, et al. Effect of chlorine on zinc transformation during flue gas pyrolysis of waste tires with PVC: An experimental study and theoretical calculations[J]. Fuel, 2023, DOI: 10.1016/j.fuel.2023.129309.

[34]

SOPHONRAT N, SANDSTRÖM L, SVANBERG R, et al. Ex situ catalytic pyrolysis of a mixture of polyvinyl chloride and cellulose using calcium oxide for hcl adsorption and catalytic reforming of the pyrolysis products[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13960-13970.

[35]

BLAZSÓ M, JAKAB E. Effect of metals, metal oxides, and carboxylates on the thermal decomposition processes of poly (vinyl chloride)[J]. Journal of Analytical and Applied Pyrolysis, 1999, 49(1/2): 125-143.

[36]

PACHITSAS S, SKAARUP JENSEN L, WEDEL S, et al. Hydrogen chloride (HCl) absorption by raw meal and raw meal compounds, using in-situ HCl generation and TGA-FTIR tests[J]. Journal of Environmental Chemical Engineering, 2019, DOI: 10.1016/j.jece.2018.102869.

[37]

ZHU H M, JIANG X G, YAN J H, et al. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 1-9.

[38]

LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Dechlorination of fuels in pyrolysis of PVC containing plastic wastes[J]. Fuel Processing Technology, 2011, 92(2): 253-260.

[39]

BREBU M, BHASKAR T, MURAI K, et al. Removal of nitrogen, bromine, and chlorine from PP/PE/PS/PVC/ABS-Br pyrolysis liquid products using Fe- and Ca-based catalysts[J]. Polymer Degradation and Stability, 2005, 87(2): 225-230.

[40]

VEKSHA A, GIANNIS A, OH W D, et al. Upgrading of non-condensable pyrolysis gas from mixed plastics through catalytic decomposition and dechlorination[J]. Fuel Processing Technology, 2018, 170: 13-20.

[41]

ESCOLA J M, AGUADO J, SERRANO D P, et al. Catalytic hydroreforming of the polyethylene thermal cracking oil over Ni supported hierarchical zeolites and mesostructured aluminosilicates[J]. Applied Catalysis B: Environmental, 2011, 106(3-4): 405-415.

[42]

AGUADO J, SERRANO D P, MIGUEL GSAN, et al. Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 415-423.

[43]

INAYAT A, FASOLINI A, BASILE F, et al. Chemical recycling of waste polystyrene by thermo-catalytic pyrolysis: A description for different feedstocks, catalysts and operation modes[J]. Polymer Degradation and Stability, 2022, DOI: 10.1016/j.polymdegradstab.2022.109981.

[44]

GULAB H, JAN M R, SHAH J, et al.Plastic catalytic pyrolysis to fuels as tertiary polymer recycling method: Effect of process conditions[J]. Journal of Environmental Science and Health, Part A,  2010, DOI: 10.1080/10934521003709206.

[45]

BUEKENS A G, HUANG H. Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes[J]. Resources, Conservation and Recycling, 1998, 23(3): 163-181.

[46]

MARK L O, CENDEJAS M C, HERMANS I. The use of heterogeneous catalysis in the chemical valorization of plastic waste[J]. ChemSusChem, 2020, 13(22): 5808-5836.

[47]

HU Y, LI M, ZHOU N, et al. Catalytic stepwise pyrolysis for dechlorination and chemical recycling of PVC-containing mixed plastic wastes: Influence of temperature, heating rate, and catalyst[J]. Science of the Total Environment, 2024, DOI: 10.1016/j.scitotenv.2023.168344.

[48]

LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes[J]. Waste Management, 2011, 31(8): 1852-1858.

[49]

张乐瑶.聚氯乙烯催化热解脱氯制备碳氢化合物的研究[D].南京:南京农业大学,2019.

[50]

YANIK J, UDDIN Md A, IKEUCHI K, et al. The catalytic effect of red mud on the degradation of poly (vinyl chloride) containing polymer mixture into fuel oil[J]. Polymer Degradation and Stability, 2001, 73(2): 335-346.

[51]

MASUDA Y, UDA T, TERAKADO O, et al. Pyrolysis study of poly(vinyl chloride)-metal oxide mixtures: Quantitative product analysis and the chlorine fixing ability of metal oxides[J]. Journal of Analytical and Applied Pyrolysis, 2006, 77(2): 159-168.

[52]

TANG C, WANG Y Z, ZHOU Q, et al. Catalytic effect of Al-Zn composite catalyst on the degradation of PVC-containing polymer mixtures into pyrolysis oil[J]. Polymer Degradation and Stability, 2003, 81(1): 89-94.

[53]

LOPEZ-URIONABARRENECHEA A, DE MARCO I, CABALLERO B M, et al. Catalytic stepwise pyrolysis of packaging plastic waste[J]. Journal of Analytical and Applied Pyrolysis, 2012, 96: 54-62.

[54]

MARINO A, ALOISE A, HERNANDO H, et al. ZSM-5 zeolites performance assessment in catalytic pyrolysis of PVC-containing real WEEE plastic wastes[J]. Catalysis Today, 2022, 390/391: 210-220.

[55]

YE L, LI T, HONG L. Co-pyrolysis of Fe3O4-poly(vinyl chloride) (PVC) mixtures: Mitigation of chlorine emissions during PVC recycling[J]. Waste Management, 2021, 126: 832-842.

[56]

YU H J, QU J S, LIU Y, et al. Co-pyrolysis of biomass and polyvinyl chloride under microwave irradiation: Distribution of chlorine[J]. Science of the Total Environment, 2022, DOI: 10.1016/j.scitotenv.2021.150903.

[57]

DUANGCHAN A, SAMART C. Tertiary recycling of PVC-containing plastic waste by copyrolysis with cattle manure[J]. Waste Management, 2008, 28(11): 2415-2421.

[58]

WANG K, BAN Y P, WU Y F, et al. Synergistic effect and chlorine migration behavior in co-pyrolysis of Pingshuo coal and polyvinyl chloride and directional chlorine enrichment using calcium oxide[J]. Fuel, 2023, DOI: 10.1016/j.fuel.2023.128749.

[59]

PENG C, FENG W, ZHANG Y H, et al. Low temperature co-pyrolysis of food waste with PVC-derived char: Products distributions, char properties and mechanism of bio-oil upgrading[J]. Energy, 2021, DOI: 10.1016/j.energy.2020.119670.

[60]

ZHOU H, WU C, ONWUDILI J A, et al. Effect of interactions of PVC and biomass components on the formation of polycyclic aromatic hydrocarbons (PAH) during fast co-pyrolysis[J]. RSC Advances, 2015, 5(15): 11371-11377.

[61]

CHEN Z Z, WU D R, CHEN L, et al. The fast co-pyrolysis study of PVC and biomass for disposing of solid wastes and resource utilization in N2 and CO2 [J]. Process Safety and Environmental Protection, 2021, 150: 489-496.

[62]

MENG H Y, WANG S Z, CHEN L, et al. Investigation on synergistic effects and char morphology during co-pyrolysis of poly(vinyl chloride) blended with different rank coals from Northern China[J]. Energy & Fuels, 2015, 29(10): 6645-6655.

[63]

PARK K B, CHOI M J, CHAE D Y, et al. Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil[J]. Energy, 2022, DOI: 10.1016/j.energy.2021.122583.

AI Summary AI Mindmap
PDF (771KB)

620

访问

0

被引

详细

导航
相关文章

AI思维导图

/