玄武岩纤维筋网沥青混合料的层间抗剪特性研究
Study on Interlayer Shear Resistance of Asphalt Mixture Reinforced by Basalt Fiber Mesh
为了揭示玄武岩纤维筋网沥青混合料层间抗剪特性,提出自主研发的复合板剪切试验方法,分析玄武岩纤维筋网直径和网格间距对沥青混合料层间抗剪强度和层间黏结系数的影响规律。结果表明:随着玄武岩纤维筋网直径和网格间距的增大,层间抗剪强度和层间黏结系数均呈现先增大后降低的趋势;当筋网直径为6 mm且网格间距为60 mm×60 mm时,玄武岩纤维筋网对沥青混合料层间抗剪特性的提升效果最为显著,较未布设玄武岩纤维筋网时,层间剪切强度提高28%,层间黏结系数提高78%;当玄武岩纤维筋网直径大于8 mm或网格间距为40 mm×40 mm和100 mm×100 mm时,布设玄武岩纤维筋网反而不利于层间抗剪特性。
To investigate the interlayer shear properties of basalt fiber-reinforced asphalt mixtures, a composite plate shear test method was proposed. The study examined the effects of the diameter and mesh spacing of the basalt fiber reinforcement mesh on the interlayer shear strength and interlayer bond coefficient of the asphalt mixture. The results indicated that both the interlayer shear strength and interlayer bonding coefficient initially increased and then decreased as the diameter and interlayer spacing of the basalt fiber reinforcement mesh increase. Specifically, when the mesh diameter was 6 mm and the mesh spacing was 60 mm×60 mm, the basalt fiber mesh had the most significant positive impact on enhancing the interlayer shear properties. The interlayer shear strength and interlayer bonding coefficient increased by 28% and 78%, respectively, compared to the values without a basalt fiber reinforcement mesh. Conversely, when the diameter of the reinforcement mesh exceeded 8 mm, or when the mesh spacing was either 40 mm×40 mm or 100 mm×100 mm, the installation of the basalt fiber reinforcement mesh was detrimental to the interlayer shear properties.
沥青混合料 / 玄武岩纤维筋网 / 层间抗剪性能 / 复合板剪切试验
Asphalt mixtures / Basalt fiber mesh / Interlayer shear resistance / Composite plate shear test
| [1] |
李天窄,李益南.玄武岩纤维泡沫混凝土的制备及性能分析[J].塑料科技,2024,52(10):104-107. |
| [2] |
李庆文,禹萌萌,祝青云,玄武岩-聚乙烯醇混杂纤维混凝土抗硫酸盐侵蚀研究[J].塑料科技,2022,50(10):5-11. |
| [3] |
徐冬梅,李艳,郭红星.冻融作用下BFRP筋与混杂纤维混凝土黏结性能研究[J].塑料科技,2023,51(10):71-76. |
| [4] |
毛楠,翟健梁,赖淏,寒区沥青混合料阻裂性能研究进展[J].应用化工,2024,53(2):458-462. |
| [5] |
何超金.玄武岩纤维布/PVC复合材料的制备及力学性能研究[J].塑料科技,2022,50(4):15-18. |
| [6] |
秦鹏成,邓长青,周翔,双绞合钢丝加筋网夹层系统的路用性能研究[J].华北水利水电大学学报:自然科学版,2021,42(1):89-94. |
| [7] |
陈飞,张林艳,李先延,天然纤维沥青混合料研究与应用进展[J].应用化工,2022,51(5):1472-1479. |
| [8] |
孟杰,唐晓亮.不同纤维对沥青混合料性能影响分析[J].化工新型材料,2023,51():584-587. |
| [9] |
沈涛,周宁.基于劈裂试验的新旧路面拼接界面黏结性能研究[J].应用化工,2022,51():171-174. |
| [10] |
呙润华,张海虎.考虑层间接触状态的沥青路面力学性能分析[J].科学技术与工程,2022,22(25):11203-11211. |
| [11] |
黄立葵,冯晓东,夏爱辉,沥青路面结构层间加筋性能试验研究[J].铁道科学与工程学报,2023,20(2):600-610. |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
赵子斌,孙红,赵丽平.改性碳纤维增强聚苯乙烯泡沫混凝土的制备及其性能研究[J].塑料科技,2022,50(3):33-36. |
| [20] |
张志萍,董建明.玻璃纤维增强再生沥青混合料性能研究[J].公路,2023,68(9):80-87. |
| [21] |
张抒幻,吴金荣,张涛.钢渣粉/聚酯纤维沥青混合料水稳定性研究[J].科学技术与工程,2023,23(2):785-793. |
| [22] |
李靖,曹海波,任海生.玄武岩纤维增韧环氧沥青及其混合料性能研究[J].公路,2024,69(9):285-290. |
| [23] |
董俊杰,邬燕,张伟,玄武岩纤维对高RAP掺量热再生沥青混合料路用性能的影响[J].化工新型材料,2024,52():289-293. |
| [24] |
张垚,颜子超,康爱红,高寒大温差条件下玄武岩纤维沥青混合料低温性能研究[J].实验技术与管理,2024,41(5):92-98. |
| [25] |
栾利强,余和德,文双寿,玄武岩纤维对聚氨酯改性沥青混合料水稳定性提升研究[J].化工新型材料,2024,52(5):269-273. |
| [26] |
杨程程,柳力,刘朝晖,基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青黏附特性研究[J].材料导报,2024,38(6):274-280. |
| [27] |
林明安,林加剑.高温和冻融后玄武岩纤维筋力学性能研究[J].铁道工程学报,2023,40(8):18-22. |
陕西省科技厅创新能力支撑计划(2022TD-06)
/
| 〈 |
|
〉 |