CaCO3杂化扩链剂改性聚乳酸/聚乙醇酸复合材料的结构与性能研究
Structure and Properties Study of Polylactic Acid/Polyglycolic Acid Composites Modified by CaCO3 Hybrid Chain Extender
以苯乙烯(St)、甲基丙烯酸甲酯(MMA)和甲基丙烯酸缩水甘油酯(GMA)为单体,采用表面引发自由基共聚法,合成碳酸钙杂化扩链剂(CaCO3-g-ADR)。红外光谱、热重分析和透射电镜结果表明,ADR共聚物成功接枝在CaCO3表面。基于熔融共混法,以CaCO3-g-ADR对质量比为8∶2的聚乳酸/聚乙醇酸(PLA/PGA)共混物进行改性。利用拉伸冲击测试、差示扫描量热、旋转流变和维卡软化温度测试等方法,考察CaCO3-g-ADR用量对复合材料力学性能、热性能、流变行为和耐热性的影响。结果表明:CaCO3-g-ADR对PLA/PGA共混物具有较好的增容作用,随着CaCO3-g-ADR用量的增大,复合材料的拉伸强度先增大后减小,冲击强度和断裂伸长率均高于PLA/PGA共混物,同时耐热性提升。当CaCO3-g-ADR质量分数为4%时,复合材料的拉伸强度为65.8 MPa,冲击强度为5.9 kJ/m2,维卡软化温度(VST)达到71.8 ℃。CaCO3-g-ADR和PGA促进了PLA冷结晶,使复合材料熔体表现出更高的复数黏度和更强的非牛顿行为。
Styrene (St), methyl methacrylate (MMA), and glycidyl methacrylate (GMA) were used as monomers to synthesize a calcium carbonate grafted acrylate-diol-amine (CaCO3-g-ADR) via surface-initiated radical copolymerization. Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and transmission electron microscopy (TEM) results demonstrated that the ADR copolymer was successfully grafted onto the CaCO3 surface. Based on the melt blending method, the CaCO3-g-ADR was used to modify the polylactic acid/polyglycolic acid (PLA/PGA) blend with a mass ratio of 8∶2. The effects of CaCO3-g-ADR content on the mechanical properties, thermal properties, rheological behavior, and heat resistance of the composites were investigated using tensile impact testing, differential scanning calorimetry (DSC), rotational rheometry, and Vicat softening temperature (VST) testing. The results indicated that CaCO3-g-ADR exhibited good compatibilization effects on the PLA/PGA blend. As the content of CaCO3-g-ADR increased, the tensile strength of the composites first increased and then decreased. The impact strength and elongation at break were higher than those of the PLA/PGA blend, and the heat resistance was enhanced. When the mass fraction of CaCO3-g-ADR was 4%, the tensile strength of the composites reached 65.8 MPa, the impact strength was 5.9 kJ/m2, and the Vicat softening temperature (VST) reached 71.8 ℃. The CaCO3-g-ADR and PGA promoted the cold crystallization of PLA, resulting in higher complex viscosity and stronger non-Newtonian behavior in the composite melt.
聚乳酸 / 聚乙醇酸 / 碳酸钙 / 复合材料 / 结构与性能
Polylactic acid / Polyglycolic acid / Calcium carbonate / Composites / Structure and performance
| [1] |
彭强,高挺,劳志超,可生物降解塑料研究进展[J].橡塑技术与装备,2024,50(8):56-64. |
| [2] |
文麒霖,贾雪华,孙炎君,生物可降解塑料包装薄膜的制备及应用进展[J].中国塑料,2024,38(9):112-122. |
| [3] |
路洋,杨卓霖,马秀清.生物可降解塑料PLA的改性研究进展[J].橡塑技术与装备,2024,50(7):10-16. |
| [4] |
曾永攀.可生物降解材料对聚乳酸的增韧改性研究进展[J].塑料科技,2024,52(9):153-160. |
| [5] |
崔豹,杨建军,吴庆云,聚乳酸复合材料共混改性研究及应用进展[J].中国塑料,2024,38(9):129-136. |
| [6] |
陈中碧,郭盛,张秀刚,聚乳酸耐热改性的研究进展[J].塑料科技,2024(6):138-143. |
| [7] |
|
| [8] |
刘凤玉.成核剂和扩链剂对PLA/PBAT共混体系性能的影响[J].工程塑料应用,2023,51(10):154-159, 166. |
| [9] |
朱染染,唐永涛,王增坤,静电纺PLA/PCL复合纳米纤维膜的制备及性能研究[J].化工新型材料,2023,51(4):137-141. |
| [10] |
杨皓然,张荣希,段同生,高韧耐热PLA/PBS共混材料的制备及性能[J].工程塑料应用,2022,50(6):25-30. |
| [11] |
罗开举,丁枫.PGA熔融改性PBAT共混物的制备与性能[J].塑料科技,2024,52(5):107-111. |
| [12] |
曹强,吴鹏飞,崔华帅,PGA聚乙交酯的研究现状[J].纺织科学研究,2024,35(9):53-58. |
| [13] |
牛荷,吕明福,张宗胤,聚乙醇酸加工技术中助剂的应用进展[J].中国塑料,2024,38(6):105-110. |
| [14] |
王晓晨.新型煤基乙醇酸甲酯合成技术与应用研究进展[J].现代化工,2024,44():52-58. |
| [15] |
孙苗苗,孙小杰,王荣,PBS增韧改性PGA共混物的制备及性能[J].塑料科技,2022,50(3):5-8. |
| [16] |
朱丽莎,王梓冲,吴亮,二步共混法制备PBAT/PGA材料及其性能[J].工程塑料应用,2024,52(8):30-38. |
| [17] |
朱丽莎,王梓冲,吴亮,二步共混法制备PBAT/PGA材料及其性能[J].工程塑料应用,2024,52(8):30-38. |
| [18] |
董露茜,徐芳,翁云宣.聚乙醇酸改性及其应用研究进展[J].中国塑料,2022,36(4):166-174. |
| [19] |
乔虎,张胜,谷晓昱,聚乳酸/聚乙醇酸共混合金界面改性研究[J].工程塑料应用,2020,48(1):8-12. |
| [20] |
张鑫,殷鹏,黄少娟,反应挤出聚合制备聚乙醇酸及其合金的热行为、力学性能和降解行为[J].塑料工业,2022,50(6):143-148. |
| [21] |
徐杰林,李振广,陈仕艳,PLA、PGA及其共聚物在包装领域应用研究进展[J].包装工程,2023,44(5):8-17. |
| [22] |
毛晨曦,李向阳,王克智.环氧聚合型扩链剂的合成及其应用研究[J].塑料助剂,2014(5):4-7. |
| [23] |
南婧文,周锦,黄文健,聚对苯二甲酸乙二醇酯拓扑结构扩链的流变和发泡性能[J].现代纺织技术,2023,31(5):86-95. |
| [24] |
程洪鹏,薛茗心,燕志祥,六亚甲基二异氰酸酯增黏PET的研究[J].塑料科技,2024,52(9):134-138. |
| [25] |
|
| [26] |
|
江苏省科技厅重点研发计划(重点)项目(BE2020386)
苏州市科技计划项目(SS202120)
/
| 〈 |
|
〉 |