In order to realize the intelligent control of connected and autonomous driving vehicle in the intersection without signal in the intelligent network connection environment and improve the intersection passage efficiency, a vehicle passage control strategy based on the gap theory was proposed. According to the function and usage of the intersection area, the intersection area was divided into a change zone, a regulation zone, a buffer zone, a physical zone and a recovery zone. A vehicle conflict zone calculation model for the physical zone was established by considering the physical size of real vehicles, and a mathematical model for the clearance control of straight-straight, straight-left-turn and left-turn-left-turn vehicles was developed by optimising the trajectory of left-turn vehicles as an elliptical trajectory. A vehicle speed induction model for the regulation zone and buffer zone was established based on the trigonometric acceleration control strategy. The use of the efficiency and rationality of the control strategy and model were compared and verified by using joint simulation of Vissim and Matlab. The results show that the proposed control strategy and model can enable the conflicting vehicles to pass through the conflicting area sequentially without stopping; comparing with the signal control strategy, the average delay time of vehicles through the intersection is reduced by 55.97%, the average travel time is reduced by 41.87%, and the vehicle energy consumption is reduced by 33.31% under this control strategy and model at a traffic volume of 1 600 pcu/h, and the higher the traffic volume, the more significant the improvement effect is.
目前,国内外学者基于间隙理论对交叉口车辆控制策略、模型和算法及优化方式等展开了系列研究。Zhong等[1]提出了一种车辆合作式穿插通过交叉口的管理控制策略,引入一种间隙选择模型,以保证车辆在主路上的优先级,并为次路上的车辆提供安全、省时的车辆穿行间隙。胡永辉等[2]在智能网联混行动力异构交通流环境下提出了基于滚动时域的最优控制策略,并在两个连续交叉口环境下进行仿真,验证了其控制策略的有效性。Lee等[3]提出了智能网联环境下无信号交叉口协同控制算法,但该算法没有考虑直行车辆与左转车辆、左转车辆与左转车辆的冲突,具有局限性。张游等[4]和潘福全等[5]在车路协同环境下提出了交叉口时空间隙动态分配智能车速控制方法,并建立了车辆跟驰控制模型和冲突避碰模型,通过Vissim和Matlab联合搭建仿真运行环境验证了其控制方法的优越性。Chen等[6]提出了一种基于间隙理论的自动驾驶车辆速度控制算法,其同时考虑目标车辆的运行状态,以及下游车辆的影响和在真实交通环境中的动态差距接受条件。Chai等[7]提出了一种基于时空时隙的自动驾驶车辆(Connected and autonomous vehicle,CAV)控制方法,采用时间序列法和轨迹预测法对车辆加速度进行动态调整,引导车辆安全通过交叉口。刘显贵等[8]在网联环境下提出信号交叉口车速控制优化策略,以通行时间、油耗、排放为目标函数,以不停车通过交叉口的车速和道路限速为约束,运用多目标遗传算法对车速进行优化。Mahyar等[9]基于车路协同技术提出一种交叉口直行车辆协同控制策略,通过调控编队车辆间的车头时距,使其满足冲突方向车辆的安全穿行间隙,并建立智能网联交叉口用于交通优化控制的随机分析模型。Zhang等[10]提出左转和右转车辆通过无信号交叉口的控制框架,以乘客舒适度和通行时间最小化为目标进行优化,推导其在控制区域内保证避免碰撞和安全距离约束的显式解。常玉林等[11]基于间隙理论构建智能网联环境下的无信号交叉口车辆智能控制策略,以次路车顺利通过主路为目标建立控制模型,并验证该方法能够在一定程度上提高交叉口通行效率,减少主路车辆行车延误时间。
随着智能网联和自动驾驶车辆技术的快速发展,配备专用短程通信(Dedicated short-range communications,DSRC)的车辆不仅可以与其他网联CAV实现车车通信(Vehicle to vehicle,V2V),还可以与道路基础设施通信(Vehicle to infrastructure,V2I),车辆间隙控制变得可行,并可能在系统效率和环境可持续发展方面实现更大的效益。交通控制框架将发生转变,预计将从一维(空间或时间)逐步进化到二维(时空),即由定时信号控制-自适应信号控制-信号间隙协同控制-完全间隙控制逐步转变,如图1所示,逐渐减少道路时空资源和控制间隙的浪费,实现未来交通的智能化和高效化。
间隙控制交叉口示意图如图2所示。智能网联环境下,当自动驾驶车辆进入交叉口区域时,云端控制中心通过车联网(Vehicle to everything,V2X)技术实现对冲突车流的智能调控,通过获取车流辆速度、加速度、轨迹数据等预测主次路车辆穿越冲突区域时是否发生碰撞,是否存在可穿越间隙或不可穿越间隙,并且发布指令调控主次路车辆形成可穿越间隙,对主次路进行诱导车速穿越冲突区域[5]。
2 环境示意
2.1 研究场景及模型假设
研究场景为标准单向三车道的十字交叉口区域,交叉口进口道从中央分隔带至道路边线的车道分别为左转车道、直行车道、右转车道。无线通信技术V2X覆盖交叉口区域(物理区和功能区);车载单元及路侧单元能够实时采集共享上传信息;车载单元首先通过车车通信技术与车云通信技术(Vehicle to network,V2N)将实时监测到的信息共享给其他车载单元并整合发送给云端控制中心;然后,接收来自其他车载单元和路侧单元的反馈信息;最后,通过接收云端控制中心最终反馈的信号指令执行车辆的驾驶操作;路侧单元通过路云通信技术(Infrastructure to network,I2N)与车路通信技术将相关道路信息和车辆信息发送给相关车辆及云端控制中心,对基础数据进行信息融合处理后,云端控制中心对智能网联车辆进行控制决策。
ZhongG, ZhangJ, YinT T, et al. A cooperative management strategy designed for unsignalized intersections under a connected vehicle environment[J]. Coat International Conference of Transportation Professionals, 2015, 2015: 233-245.
HuYong-hui, JinXu-feng, WangYi-bing, et al. Intelligent networked hybrid mobility for heterogeneous traffic flow eco-driving[J]. Chinese Journal of Highways, 2022, 35(3): 15-27.
[4]
LeeJ, ParkB. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment[J]. IEEE Intelligent Transportation System, 2012, 13(1): 81-90.
ZhangYou, PanFu-quan, ZhangLi-xia,et al. Intelligent intersection speed control in a vehicle-road cooperative environment[J]. Control Theory and Applications, 2022, 39(6): 1057-1064.
PanFu-quan, ZhangYou, ZhangLi-xia, et al. Intelligent control strategy of intersection based on gap theory under vehicle-road cooperation[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2022, 41(1): 44-52.
[9]
ChenW, LiuY. Gap-based automated vehicular speed guidance towards eco-driving at an unsignalized intersection[J]. Transportmetrica B: Transport Dynamics, 2017, 2017(3): 1-22.
[10]
ChaiL G, CaiB G, WeiS G, et al. Connected and autonomous vehicles coordinating approach at intersection based on space-time slot[J]. Transportmetrica A: Transport Science, 2018, 14(10): 929-951.
LiuXian-gui, WangHui-nian, HongJing-wei, et al. Signal intersection speed control strategy and optimization in a network-linked environment[J]. Transportation Systems Engineering and Information, 2021, 21(2): 82-90.
[13]
MahyarA, MehdiN, OliverG. Optimal traffic control at smart intersections: automated network fundamental diagram[J]. Transportation Research Part B, 2019, 137: 2-18.
[14]
ZhangY, CassandrasC G. Decentralized optimal control of connected automated vehicles at signal-free intersections including comfort-constrained turns and safety guarantees[J]. Automatica, 2019, 109: No.108563.
ChangYu-lin, ZhangCheng-xiang, ZhangPeng, et al. A gap optimization-based speed control method for signal-free intersections in a connected vehicle environment[J]. Journal of Chongqing University of Technology (Natural Sciences), 2021, 35(3): 10-17, 60.
PanFu-quan, ZhangLi-xia, LuJian, et al. The application of access management technology in highway intersection safety improvement[J]. Journal of Beijing University of Technology, 2011, 37(2): 237-242.
[19]
MilanésV, ShladoverS E, SpringJ, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(1): 296-305.
[20]
MilanésV, ShladoverS E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300.
[21]
XiaoL, WangM, SchakelW, et al. Unravelling effects of cooperative adaptive cruise control deactivation on traffic flow characteristics at merging bottlenecks[J]. Transportation Research Part C: emerging technologies, 2018, 96: 380-397.
[22]
WuX, FreeseD, CabreraA, et al. Electric vehicles' energy consumption measurement and estimation[J]. Transportation Research Part D: Transport and Environment, 2015, 34: 52-67.
[23]
AltanO D, WuG, BarthM J, et al. GlidePath: eco-friendly automated approach and departure at signalized intersections[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(4): 266-277.
ZhangJian, WuKun-run, YangMin, et al. Dual-loop adaptive control model for intersections in an intelligent network link environment[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 541-548.
[26]
StevanovicJ, StevanovicA, MartinP T, et al. Stochastic optimization of traffic control and transit priority settings in VISSIM[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(3): 332-349.
[27]
MahmassaniH S. 50th Anniversary invited article—autonomous vehicles and connected vehicle systems: flow and operations considerations[J]. Transportation Science, 2016, 50(4): 1140-1162.